Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2x-y=5,3x+y=10
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
2x-y=5
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
2x=y+5
Mblidh y në të dyja anët e ekuacionit.
x=\frac{1}{2}\left(y+5\right)
Pjesëto të dyja anët me 2.
x=\frac{1}{2}y+\frac{5}{2}
Shumëzo \frac{1}{2} herë y+5.
3\left(\frac{1}{2}y+\frac{5}{2}\right)+y=10
Zëvendëso x me \frac{5+y}{2} në ekuacionin tjetër, 3x+y=10.
\frac{3}{2}y+\frac{15}{2}+y=10
Shumëzo 3 herë \frac{5+y}{2}.
\frac{5}{2}y+\frac{15}{2}=10
Mblidh \frac{3y}{2} me y.
\frac{5}{2}y=\frac{5}{2}
Zbrit \frac{15}{2} nga të dyja anët e ekuacionit.
y=1
Pjesëto të dyja anët e ekuacionit me \frac{5}{2}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=\frac{1+5}{2}
Zëvendëso y me 1 në x=\frac{1}{2}y+\frac{5}{2}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=3
Mblidh \frac{5}{2} me \frac{1}{2} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
x=3,y=1
Sistemi është zgjidhur tani.
2x-y=5,3x+y=10
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}2&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}2&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}2&-1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-1}{2-\left(-3\right)}\\-\frac{3}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 5+\frac{1}{5}\times 10\\-\frac{3}{5}\times 5+\frac{2}{5}\times 10\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Bëj veprimet.
x=3,y=1
Nxirr elementet e matricës x dhe y.
2x-y=5,3x+y=10
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
3\times 2x+3\left(-1\right)y=3\times 5,2\times 3x+2y=2\times 10
Për ta bërë 2x të barabartë me 3x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 3 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 2.
6x-3y=15,6x+2y=20
Thjeshto.
6x-6x-3y-2y=15-20
Zbrit 6x+2y=20 nga 6x-3y=15 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-3y-2y=15-20
Mblidh 6x me -6x. Shprehjet 6x dhe -6x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-5y=15-20
Mblidh -3y me -2y.
-5y=-5
Mblidh 15 me -20.
y=1
Pjesëto të dyja anët me -5.
3x+1=10
Zëvendëso y me 1 në 3x+y=10. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
3x=9
Zbrit 1 nga të dyja anët e ekuacionit.
x=3
Pjesëto të dyja anët me 3.
x=3,y=1
Sistemi është zgjidhur tani.