Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

-3x+y=1,-3x+2y=5
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
-3x+y=1
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
-3x=-y+1
Zbrit y nga të dyja anët e ekuacionit.
x=-\frac{1}{3}\left(-y+1\right)
Pjesëto të dyja anët me -3.
x=\frac{1}{3}y-\frac{1}{3}
Shumëzo -\frac{1}{3} herë -y+1.
-3\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=5
Zëvendëso x me \frac{-1+y}{3} në ekuacionin tjetër, -3x+2y=5.
-y+1+2y=5
Shumëzo -3 herë \frac{-1+y}{3}.
y+1=5
Mblidh -y me 2y.
y=4
Zbrit 1 nga të dyja anët e ekuacionit.
x=\frac{1}{3}\times 4-\frac{1}{3}
Zëvendëso y me 4 në x=\frac{1}{3}y-\frac{1}{3}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=\frac{4-1}{3}
Shumëzo \frac{1}{3} herë 4.
x=1
Mblidh -\frac{1}{3} me \frac{4}{3} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
x=1,y=4
Sistemi është zgjidhur tani.
-3x+y=1,-3x+2y=5
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}-3&1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-3\right)}&-\frac{1}{-3\times 2-\left(-3\right)}\\-\frac{-3}{-3\times 2-\left(-3\right)}&-\frac{3}{-3\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}+\frac{1}{3}\times 5\\-1+5\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Bëj veprimet.
x=1,y=4
Nxirr elementet e matricës x dhe y.
-3x+y=1,-3x+2y=5
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
-3x+3x+y-2y=1-5
Zbrit -3x+2y=5 nga -3x+y=1 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
y-2y=1-5
Mblidh -3x me 3x. Shprehjet -3x dhe 3x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-y=1-5
Mblidh y me -2y.
-y=-4
Mblidh 1 me -5.
y=4
Pjesëto të dyja anët me -1.
-3x+2\times 4=5
Zëvendëso y me 4 në -3x+2y=5. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
-3x+8=5
Shumëzo 2 herë 4.
-3x=-3
Zbrit 8 nga të dyja anët e ekuacionit.
x=1
Pjesëto të dyja anët me -3.
x=1,y=4
Sistemi është zgjidhur tani.