Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

-3x+4y=-6,5x-y=10
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
-3x+4y=-6
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
-3x=-4y-6
Zbrit 4y nga të dyja anët e ekuacionit.
x=-\frac{1}{3}\left(-4y-6\right)
Pjesëto të dyja anët me -3.
x=\frac{4}{3}y+2
Shumëzo -\frac{1}{3} herë -4y-6.
5\left(\frac{4}{3}y+2\right)-y=10
Zëvendëso x me \frac{4y}{3}+2 në ekuacionin tjetër, 5x-y=10.
\frac{20}{3}y+10-y=10
Shumëzo 5 herë \frac{4y}{3}+2.
\frac{17}{3}y+10=10
Mblidh \frac{20y}{3} me -y.
\frac{17}{3}y=0
Zbrit 10 nga të dyja anët e ekuacionit.
y=0
Pjesëto të dyja anët e ekuacionit me \frac{17}{3}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=2
Zëvendëso y me 0 në x=\frac{4}{3}y+2. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=2,y=0
Sistemi është zgjidhur tani.
-3x+4y=-6,5x-y=10
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}-3&4\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-4\times 5}&-\frac{4}{-3\left(-1\right)-4\times 5}\\-\frac{5}{-3\left(-1\right)-4\times 5}&-\frac{3}{-3\left(-1\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{4}{17}\\\frac{5}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\left(-6\right)+\frac{4}{17}\times 10\\\frac{5}{17}\left(-6\right)+\frac{3}{17}\times 10\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Bëj veprimet.
x=2,y=0
Nxirr elementet e matricës x dhe y.
-3x+4y=-6,5x-y=10
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
5\left(-3\right)x+5\times 4y=5\left(-6\right),-3\times 5x-3\left(-1\right)y=-3\times 10
Për ta bërë -3x të barabartë me 5x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 5 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me -3.
-15x+20y=-30,-15x+3y=-30
Thjeshto.
-15x+15x+20y-3y=-30+30
Zbrit -15x+3y=-30 nga -15x+20y=-30 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
20y-3y=-30+30
Mblidh -15x me 15x. Shprehjet -15x dhe 15x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
17y=-30+30
Mblidh 20y me -3y.
17y=0
Mblidh -30 me 30.
y=0
Pjesëto të dyja anët me 17.
5x=10
Zëvendëso y me 0 në 5x-y=10. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=2
Pjesëto të dyja anët me 5.
x=2,y=0
Sistemi është zgjidhur tani.