Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Zhvillo
Tick mark Image

Share

\frac{\left(a+b\right)\left(a-b\right)}{a+b}\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Faktorizo shprehjet që nuk janë faktorizuar tashmë në \frac{a^{2}-b^{2}}{a+b}.
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Thjeshto a+b në numërues dhe emërues.
\frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Shpreh \left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}} si një thyesë të vetme.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{\left(a^{2}-2ab+b^{2}\right)\left(2b+2\right)}-b
Shumëzo \frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}} herë \frac{a^{2}-ab}{2b+2} duke shumëzuar numëruesin me numëruesin dhe emëruesin me emëruesin.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-b
Faktorizo \left(a^{2}-2ab+b^{2}\right)\left(2b+2\right).
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-\frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo b herë \frac{2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Meqenëse \frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}} dhe \frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}}{2\left(b+1\right)\left(a-b\right)^{2}}
Bëj shumëzimet në \left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}.
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Kombino kufizat e ngjashme në a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}.
\frac{\left(b+1\right)\left(a-b\right)^{2}\left(a^{2}-2b\right)}{2\left(b+1\right)\left(a-b\right)^{2}}
Faktorizo shprehjet që nuk janë faktorizuar tashmë në \frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{a^{2}-2b}{2}
Thjeshto \left(b+1\right)\left(a-b\right)^{2} në numërues dhe emërues.
\frac{\left(a+b\right)\left(a-b\right)}{a+b}\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Faktorizo shprehjet që nuk janë faktorizuar tashmë në \frac{a^{2}-b^{2}}{a+b}.
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Thjeshto a+b në numërues dhe emërues.
\frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Shpreh \left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}} si një thyesë të vetme.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{\left(a^{2}-2ab+b^{2}\right)\left(2b+2\right)}-b
Shumëzo \frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}} herë \frac{a^{2}-ab}{2b+2} duke shumëzuar numëruesin me numëruesin dhe emëruesin me emëruesin.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-b
Faktorizo \left(a^{2}-2ab+b^{2}\right)\left(2b+2\right).
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-\frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo b herë \frac{2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Meqenëse \frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}} dhe \frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}}{2\left(b+1\right)\left(a-b\right)^{2}}
Bëj shumëzimet në \left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}.
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Kombino kufizat e ngjashme në a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}.
\frac{\left(b+1\right)\left(a-b\right)^{2}\left(a^{2}-2b\right)}{2\left(b+1\right)\left(a-b\right)^{2}}
Faktorizo shprehjet që nuk janë faktorizuar tashmë në \frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{a^{2}-2b}{2}
Thjeshto \left(b+1\right)\left(a-b\right)^{2} në numërues dhe emërues.