Gjej f, x, g, h, j, k, l, m, n
n=i
Share
Kopjuar në clipboard
h=i
Merr parasysh ekuacionin e katërt. Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
i=g
Merr parasysh ekuacionin e tretë. Ndërfut vlerat e njohura të ndryshoreve në ekuacion.
g=i
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
i=f\times 5
Merr parasysh ekuacionin e dytë. Ndërfut vlerat e njohura të ndryshoreve në ekuacion.
\frac{i}{5}=f
Pjesëto të dyja anët me 5.
\frac{1}{5}i=f
Pjesëto i me 5 për të marrë \frac{1}{5}i.
f=\frac{1}{5}i
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
\frac{1}{5}ix=4x+5
Merr parasysh ekuacionin e parë. Ndërfut vlerat e njohura të ndryshoreve në ekuacion.
\frac{1}{5}ix-4x=5
Zbrit 4x nga të dyja anët.
\left(-4+\frac{1}{5}i\right)x=5
Kombino \frac{1}{5}ix dhe -4x për të marrë \left(-4+\frac{1}{5}i\right)x.
x=\frac{5}{-4+\frac{1}{5}i}
Pjesëto të dyja anët me -4+\frac{1}{5}i.
x=\frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)}
Shumëzo që të dy, numëruesin dhe emëruesin e \frac{5}{-4+\frac{1}{5}i} me numrin e përbërë të konjuguar të emëruesit, -4-\frac{1}{5}i.
x=\frac{-20-i}{\frac{401}{25}}
Bëj shumëzimet në \frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)}.
x=-\frac{500}{401}-\frac{25}{401}i
Pjesëto -20-i me \frac{401}{25} për të marrë -\frac{500}{401}-\frac{25}{401}i.
f=\frac{1}{5}i x=-\frac{500}{401}-\frac{25}{401}i g=i h=i j=i k=i l=i m=i n=i
Sistemi është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}