Gjej x, y, z, a
x=\frac{18^{\frac{2}{3}}\left(\sqrt{3\left(27a^{2}-4\right)}+9a\right)^{-\frac{1}{3}}\left(\left(\sqrt{3\left(27a^{2}-4\right)}+9a\right)^{\frac{2}{3}}+\sqrt[3]{3}\times 2^{\frac{2}{3}}\right)}{18}\text{, }y=a\text{, }z=a\text{, }a\in \mathrm{C}
x=-\frac{6^{\frac{2}{3}}\left(1+\sqrt{3}i\right)\left(\sqrt{3\left(27a^{2}-4\right)}+9a\right)^{-\frac{1}{3}}\left(-\left(1+\sqrt{3}i\right)\times \left(3\left(\sqrt{3\left(27a^{2}-4\right)}+9a\right)\right)^{\frac{2}{3}}+6\times 2^{\frac{2}{3}}\right)}{72}\text{, }y=a\text{, }z=a\text{, }a\in \mathrm{C}
x=-\frac{6^{\frac{2}{3}}\left(-\sqrt{3}i+1\right)\left(\sqrt{3\left(27a^{2}-4\right)}+9a\right)^{-\frac{1}{3}}\left(-\left(-\sqrt{3}i+1\right)\times \left(3\left(\sqrt{3\left(27a^{2}-4\right)}+9a\right)\right)^{\frac{2}{3}}+6\times 2^{\frac{2}{3}}\right)}{72}\text{, }y=a\text{, }z=a\text{, }a\in \mathrm{C}
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}