Gjej x, y, z, a (complex solution)
x=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{2}\approx 0.97871691+1.695187415i\text{, }y=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{2}\approx 0.97871691+1.695187415i\text{, }z=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{2}\approx 0.97871691+1.695187415i\text{, }a=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{2}\approx 0.97871691+1.695187415i
x=-\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}}{2}\approx -1.957433821\text{, }y=-\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}}{2}\approx -1.957433821\text{, }z=-\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}}{2}\approx -1.957433821\text{, }a=-\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}}{2}\approx -1.957433821
x=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{5\pi i}{3}}}{2}\approx 0.97871691-1.695187415i\text{, }y=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{5\pi i}{3}}}{2}\approx 0.97871691-1.695187415i\text{, }z=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{5\pi i}{3}}}{2}\approx 0.97871691-1.695187415i\text{, }a=\frac{\sqrt[3]{15}\times 2^{\frac{2}{3}}e^{\frac{5\pi i}{3}}}{2}\approx 0.97871691-1.695187415i
Gjej x, y, z, a
a = -\frac{\sqrt[3]{15} \cdot 2 ^ {\frac{2}{3}}}{2} \approx -1.957433821
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}