Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x+y=3600,4x+2y=11000
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x+y=3600
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=-y+3600
Zbrit y nga të dyja anët e ekuacionit.
4\left(-y+3600\right)+2y=11000
Zëvendëso x me -y+3600 në ekuacionin tjetër, 4x+2y=11000.
-4y+14400+2y=11000
Shumëzo 4 herë -y+3600.
-2y+14400=11000
Mblidh -4y me 2y.
-2y=-3400
Zbrit 14400 nga të dyja anët e ekuacionit.
y=1700
Pjesëto të dyja anët me -2.
x=-1700+3600
Zëvendëso y me 1700 në x=-y+3600. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=1900
Mblidh 3600 me -1700.
x=1900,y=1700
Sistemi është zgjidhur tani.
x+y=3600,4x+2y=11000
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3600\\11000\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3600+\frac{1}{2}\times 11000\\2\times 3600-\frac{1}{2}\times 11000\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1900\\1700\end{matrix}\right)
Bëj veprimet.
x=1900,y=1700
Nxirr elementet e matricës x dhe y.
x+y=3600,4x+2y=11000
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
4x+4y=4\times 3600,4x+2y=11000
Për ta bërë x të barabartë me 4x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 4 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
4x+4y=14400,4x+2y=11000
Thjeshto.
4x-4x+4y-2y=14400-11000
Zbrit 4x+2y=11000 nga 4x+4y=14400 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
4y-2y=14400-11000
Mblidh 4x me -4x. Shprehjet 4x dhe -4x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
2y=14400-11000
Mblidh 4y me -2y.
2y=3400
Mblidh 14400 me -11000.
y=1700
Pjesëto të dyja anët me 2.
4x+2\times 1700=11000
Zëvendëso y me 1700 në 4x+2y=11000. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
4x+3400=11000
Shumëzo 2 herë 1700.
4x=7600
Zbrit 3400 nga të dyja anët e ekuacionit.
x=1900
Pjesëto të dyja anët me 4.
x=1900,y=1700
Sistemi është zgjidhur tani.