Gjej x (complex solution)
x=-\frac{4^{\frac{2}{3}}\left(1+\sqrt{3}i\right)\left(2\left(\sqrt[3]{3\sqrt{273}-59}\left(-\sqrt{3}i-1\right)+2\sqrt[3]{-3\sqrt{273}-59}\right)-\sqrt{3}\sqrt[3]{4}i+\sqrt[3]{4}\right)}{96}\approx -0.10945928-0.867541327i
x=\frac{4^{\frac{2}{3}}\left(2\left(\sqrt[3]{3\sqrt{273}-59}+\sqrt[3]{-3\sqrt{273}-59}\right)-\sqrt[3]{4}\right)}{24}\approx 0.556042468+1.25176894i
x=-\frac{4^{\frac{2}{3}}\left(-\sqrt{3}i+1\right)\left(2\left(\sqrt[3]{3\sqrt{273}-59}\left(-1+\sqrt{3}i\right)+2\sqrt[3]{-3\sqrt{273}-59}\right)+\sqrt[3]{4}+\sqrt{3}\sqrt[3]{4}i\right)}{96}\approx -0.946583188-0.384227613i
Gjej x
x=-\frac{4^{\frac{2}{3}}\sqrt[3]{3\sqrt{273}+59}}{12}-\frac{4^{\frac{2}{3}}\sqrt[3]{59-3\sqrt{273}}}{12}-\frac{1}{6}\approx -1.612084936
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}