Kaloni tek përmbajtja kryesore
Gjej y, x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

y-2x=0
Merr parasysh ekuacionin e parë. Zbrit 2x nga të dyja anët.
y-2x=0,3y+x=14
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
y-2x=0
Zgjidh njërin prej ekuacioneve dhe gjej y duke veçuar y në anën e majtë të shenjës së barazimit.
y=2x
Mblidh 2x në të dyja anët e ekuacionit.
3\times 2x+x=14
Zëvendëso y me 2x në ekuacionin tjetër, 3y+x=14.
6x+x=14
Shumëzo 3 herë 2x.
7x=14
Mblidh 6x me x.
x=2
Pjesëto të dyja anët me 7.
y=2\times 2
Zëvendëso x me 2 në y=2x. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh y menjëherë.
y=4
Shumëzo 2 herë 2.
y=4,x=2
Sistemi është zgjidhur tani.
y-2x=0
Merr parasysh ekuacionin e parë. Zbrit 2x nga të dyja anët.
y-2x=0,3y+x=14
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&-2\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\14\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}0\\14\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&-2\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}0\\14\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}0\\14\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\times 3\right)}&-\frac{-2}{1-\left(-2\times 3\right)}\\-\frac{3}{1-\left(-2\times 3\right)}&\frac{1}{1-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}0\\14\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}0\\14\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 14\\\frac{1}{7}\times 14\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Bëj veprimet.
y=4,x=2
Nxirr elementet e matricës y dhe x.
y-2x=0
Merr parasysh ekuacionin e parë. Zbrit 2x nga të dyja anët.
y-2x=0,3y+x=14
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
3y+3\left(-2\right)x=0,3y+x=14
Për ta bërë y të barabartë me 3y, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 3 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
3y-6x=0,3y+x=14
Thjeshto.
3y-3y-6x-x=-14
Zbrit 3y+x=14 nga 3y-6x=0 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-6x-x=-14
Mblidh 3y me -3y. Shprehjet 3y dhe -3y thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-7x=-14
Mblidh -6x me -x.
x=2
Pjesëto të dyja anët me -7.
3y+2=14
Zëvendëso x me 2 në 3y+x=14. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh y menjëherë.
3y=12
Zbrit 2 nga të dyja anët e ekuacionit.
y=4
Pjesëto të dyja anët me 3.
y=4,x=2
Sistemi është zgjidhur tani.