Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x-y+2=0,x+y-4=0
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x-y+2=0
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x-y=-2
Zbrit 2 nga të dyja anët e ekuacionit.
x=y-2
Mblidh y në të dyja anët e ekuacionit.
y-2+y-4=0
Zëvendëso x me y-2 në ekuacionin tjetër, x+y-4=0.
2y-2-4=0
Mblidh y me y.
2y-6=0
Mblidh -2 me -4.
2y=6
Mblidh 6 në të dyja anët e ekuacionit.
y=3
Pjesëto të dyja anët me 2.
x=3-2
Zëvendëso y me 3 në x=y-2. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=1
Mblidh -2 me 3.
x=1,y=3
Sistemi është zgjidhur tani.
x-y+2=0,x+y-4=0
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\\-\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Bëj veprimet.
x=1,y=3
Nxirr elementet e matricës x dhe y.
x-y+2=0,x+y-4=0
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
x-x-y-y+2+4=0
Zbrit x+y-4=0 nga x-y+2=0 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-y-y+2+4=0
Mblidh x me -x. Shprehjet x dhe -x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-2y+2+4=0
Mblidh -y me -y.
-2y+6=0
Mblidh 2 me 4.
-2y=-6
Zbrit 6 nga të dyja anët e ekuacionit.
y=3
Pjesëto të dyja anët me -2.
x+3-4=0
Zëvendëso y me 3 në x+y-4=0. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x-1=0
Mblidh 3 me -4.
x=1
Mblidh 1 në të dyja anët e ekuacionit.
x=1,y=3
Sistemi është zgjidhur tani.