\left\{ \begin{array} { l } { x = 2 y } \\ { y = 3 x - 10 } \end{array} \right.
Gjej x, y
x=4
y=2
Grafiku
Share
Kopjuar në clipboard
x-2y=0
Merr parasysh ekuacionin e parë. Zbrit 2y nga të dyja anët.
y-3x=-10
Merr parasysh ekuacionin e dytë. Zbrit 3x nga të dyja anët.
x-2y=0,-3x+y=-10
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x-2y=0
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=2y
Mblidh 2y në të dyja anët e ekuacionit.
-3\times 2y+y=-10
Zëvendëso x me 2y në ekuacionin tjetër, -3x+y=-10.
-6y+y=-10
Shumëzo -3 herë 2y.
-5y=-10
Mblidh -6y me y.
y=2
Pjesëto të dyja anët me -5.
x=2\times 2
Zëvendëso y me 2 në x=2y. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=4
Shumëzo 2 herë 2.
x=4,y=2
Sistemi është zgjidhur tani.
x-2y=0
Merr parasysh ekuacionin e parë. Zbrit 2y nga të dyja anët.
y-3x=-10
Merr parasysh ekuacionin e dytë. Zbrit 3x nga të dyja anët.
x-2y=0,-3x+y=-10
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-10\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&-2\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\left(-3\right)\right)}&-\frac{-2}{1-\left(-2\left(-3\right)\right)}\\-\frac{-3}{1-\left(-2\left(-3\right)\right)}&\frac{1}{1-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-10\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{2}{5}\\-\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\-10\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)\\-\frac{1}{5}\left(-10\right)\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Bëj veprimet.
x=4,y=2
Nxirr elementet e matricës x dhe y.
x-2y=0
Merr parasysh ekuacionin e parë. Zbrit 2y nga të dyja anët.
y-3x=-10
Merr parasysh ekuacionin e dytë. Zbrit 3x nga të dyja anët.
x-2y=0,-3x+y=-10
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
-3x-3\left(-2\right)y=0,-3x+y=-10
Për ta bërë x të barabartë me -3x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me -3 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
-3x+6y=0,-3x+y=-10
Thjeshto.
-3x+3x+6y-y=10
Zbrit -3x+y=-10 nga -3x+6y=0 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
6y-y=10
Mblidh -3x me 3x. Shprehjet -3x dhe 3x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
5y=10
Mblidh 6y me -y.
y=2
Pjesëto të dyja anët me 5.
-3x+2=-10
Zëvendëso y me 2 në -3x+y=-10. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
-3x=-12
Zbrit 2 nga të dyja anët e ekuacionit.
x=4
Pjesëto të dyja anët me -3.
x=4,y=2
Sistemi është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}