Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x+y=6,2x-2y=4
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x+y=6
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=-y+6
Zbrit y nga të dyja anët e ekuacionit.
2\left(-y+6\right)-2y=4
Zëvendëso x me -y+6 në ekuacionin tjetër, 2x-2y=4.
-2y+12-2y=4
Shumëzo 2 herë -y+6.
-4y+12=4
Mblidh -2y me -2y.
-4y=-8
Zbrit 12 nga të dyja anët e ekuacionit.
y=2
Pjesëto të dyja anët me -4.
x=-2+6
Zëvendëso y me 2 në x=-y+6. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=4
Mblidh 6 me -2.
x=4,y=2
Sistemi është zgjidhur tani.
x+y=6,2x-2y=4
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&1\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}1&1\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&1\\2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 6+\frac{1}{4}\times 4\\\frac{1}{2}\times 6-\frac{1}{4}\times 4\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Bëj veprimet.
x=4,y=2
Nxirr elementet e matricës x dhe y.
x+y=6,2x-2y=4
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
2x+2y=2\times 6,2x-2y=4
Për ta bërë x të barabartë me 2x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 2 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
2x+2y=12,2x-2y=4
Thjeshto.
2x-2x+2y+2y=12-4
Zbrit 2x-2y=4 nga 2x+2y=12 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
2y+2y=12-4
Mblidh 2x me -2x. Shprehjet 2x dhe -2x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
4y=12-4
Mblidh 2y me 2y.
4y=8
Mblidh 12 me -4.
y=2
Pjesëto të dyja anët me 4.
2x-2\times 2=4
Zëvendëso y me 2 në 2x-2y=4. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
2x-4=4
Shumëzo -2 herë 2.
2x=8
Mblidh 4 në të dyja anët e ekuacionit.
x=4
Pjesëto të dyja anët me 2.
x=4,y=2
Sistemi është zgjidhur tani.