\left\{ \begin{array} { l } { x + y = 3 } \\ { y - x = \frac { 3 } { 4 } } \end{array} \right.
Gjej x, y
x = \frac{9}{8} = 1\frac{1}{8} = 1.125
y = \frac{15}{8} = 1\frac{7}{8} = 1.875
Grafiku
Share
Kopjuar në clipboard
x+y=3,-x+y=\frac{3}{4}
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x+y=3
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=-y+3
Zbrit y nga të dyja anët e ekuacionit.
-\left(-y+3\right)+y=\frac{3}{4}
Zëvendëso x me -y+3 në ekuacionin tjetër, -x+y=\frac{3}{4}.
y-3+y=\frac{3}{4}
Shumëzo -1 herë -y+3.
2y-3=\frac{3}{4}
Mblidh y me y.
2y=\frac{15}{4}
Mblidh 3 në të dyja anët e ekuacionit.
y=\frac{15}{8}
Pjesëto të dyja anët me 2.
x=-\frac{15}{8}+3
Zëvendëso y me \frac{15}{8} në x=-y+3. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=\frac{9}{8}
Mblidh 3 me -\frac{15}{8}.
x=\frac{9}{8},y=\frac{15}{8}
Sistemi është zgjidhur tani.
x+y=3,-x+y=\frac{3}{4}
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times \frac{3}{4}\\\frac{1}{2}\times 3+\frac{1}{2}\times \frac{3}{4}\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{15}{8}\end{matrix}\right)
Bëj veprimet.
x=\frac{9}{8},y=\frac{15}{8}
Nxirr elementet e matricës x dhe y.
x+y=3,-x+y=\frac{3}{4}
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
x+x+y-y=3-\frac{3}{4}
Zbrit -x+y=\frac{3}{4} nga x+y=3 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
x+x=3-\frac{3}{4}
Mblidh y me -y. Shprehjet y dhe -y thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
2x=3-\frac{3}{4}
Mblidh x me x.
2x=\frac{9}{4}
Mblidh 3 me -\frac{3}{4}.
x=\frac{9}{8}
Pjesëto të dyja anët me 2.
-\frac{9}{8}+y=\frac{3}{4}
Zëvendëso x me \frac{9}{8} në -x+y=\frac{3}{4}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh y menjëherë.
y=\frac{15}{8}
Mblidh \frac{9}{8} në të dyja anët e ekuacionit.
x=\frac{9}{8},y=\frac{15}{8}
Sistemi është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}