\left\{ \begin{array} { l } { 8 = a ^ { 2 } - b ^ { 2 } } \\ { \frac { 5 } { 9 n ^ { 2 } } + \frac { 4 } { b ^ { 2 } } = 1 } \end{array} \right.
Gjej a, b, n
a=2i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\sqrt{27-\frac{10}{n^{2}}}\text{, }b=6i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\text{, }n\in \mathrm{C}\setminus 0,-\frac{\sqrt{5}}{3},\frac{\sqrt{5}}{3}
a=2i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\sqrt{27-\frac{10}{n^{2}}}\text{, }b=-6i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\text{, }n\in \mathrm{C}\setminus 0,-\frac{\sqrt{5}}{3},\frac{\sqrt{5}}{3}
a=-2i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\sqrt{27-\frac{10}{n^{2}}}\text{, }b=6i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\text{, }n\in \mathrm{C}\setminus 0,-\frac{\sqrt{5}}{3},\frac{\sqrt{5}}{3}
a=-2i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\sqrt{27-\frac{10}{n^{2}}}\text{, }b=-6i\left(-9+\frac{5}{n^{2}}\right)^{-\frac{1}{2}}\text{, }n\in \mathrm{C}\setminus 0,-\frac{\sqrt{5}}{3},\frac{\sqrt{5}}{3}
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}