Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

5x-4y=19,3x+2y=7
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
5x-4y=19
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
5x=4y+19
Mblidh 4y në të dyja anët e ekuacionit.
x=\frac{1}{5}\left(4y+19\right)
Pjesëto të dyja anët me 5.
x=\frac{4}{5}y+\frac{19}{5}
Shumëzo \frac{1}{5} herë 4y+19.
3\left(\frac{4}{5}y+\frac{19}{5}\right)+2y=7
Zëvendëso x me \frac{4y+19}{5} në ekuacionin tjetër, 3x+2y=7.
\frac{12}{5}y+\frac{57}{5}+2y=7
Shumëzo 3 herë \frac{4y+19}{5}.
\frac{22}{5}y+\frac{57}{5}=7
Mblidh \frac{12y}{5} me 2y.
\frac{22}{5}y=-\frac{22}{5}
Zbrit \frac{57}{5} nga të dyja anët e ekuacionit.
y=-1
Pjesëto të dyja anët e ekuacionit me \frac{22}{5}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=\frac{4}{5}\left(-1\right)+\frac{19}{5}
Zëvendëso y me -1 në x=\frac{4}{5}y+\frac{19}{5}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=\frac{-4+19}{5}
Shumëzo \frac{4}{5} herë -1.
x=3
Mblidh \frac{19}{5} me -\frac{4}{5} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
x=3,y=-1
Sistemi është zgjidhur tani.
5x-4y=19,3x+2y=7
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}5&-4\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\times 3\right)}&-\frac{-4}{5\times 2-\left(-4\times 3\right)}\\-\frac{3}{5\times 2-\left(-4\times 3\right)}&\frac{5}{5\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{3}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 19+\frac{2}{11}\times 7\\-\frac{3}{22}\times 19+\frac{5}{22}\times 7\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Bëj veprimet.
x=3,y=-1
Nxirr elementet e matricës x dhe y.
5x-4y=19,3x+2y=7
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
3\times 5x+3\left(-4\right)y=3\times 19,5\times 3x+5\times 2y=5\times 7
Për ta bërë 5x të barabartë me 3x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 3 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 5.
15x-12y=57,15x+10y=35
Thjeshto.
15x-15x-12y-10y=57-35
Zbrit 15x+10y=35 nga 15x-12y=57 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-12y-10y=57-35
Mblidh 15x me -15x. Shprehjet 15x dhe -15x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-22y=57-35
Mblidh -12y me -10y.
-22y=22
Mblidh 57 me -35.
y=-1
Pjesëto të dyja anët me -22.
3x+2\left(-1\right)=7
Zëvendëso y me -1 në 3x+2y=7. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
3x-2=7
Shumëzo 2 herë -1.
3x=9
Mblidh 2 në të dyja anët e ekuacionit.
x=3
Pjesëto të dyja anët me 3.
x=3,y=-1
Sistemi është zgjidhur tani.