\left\{ \begin{array} { l } { 2 x - y = 6 } \\ { x + y = - 3 } \end{array} \right.
Gjej x, y
x=1
y=-4
Grafiku
Share
Kopjuar në clipboard
2x-y=6,x+y=-3
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
2x-y=6
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
2x=y+6
Mblidh y në të dyja anët e ekuacionit.
x=\frac{1}{2}\left(y+6\right)
Pjesëto të dyja anët me 2.
x=\frac{1}{2}y+3
Shumëzo \frac{1}{2} herë y+6.
\frac{1}{2}y+3+y=-3
Zëvendëso x me \frac{y}{2}+3 në ekuacionin tjetër, x+y=-3.
\frac{3}{2}y+3=-3
Mblidh \frac{y}{2} me y.
\frac{3}{2}y=-6
Zbrit 3 nga të dyja anët e ekuacionit.
y=-4
Pjesëto të dyja anët e ekuacionit me \frac{3}{2}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=\frac{1}{2}\left(-4\right)+3
Zëvendëso y me -4 në x=\frac{1}{2}y+3. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=-2+3
Shumëzo \frac{1}{2} herë -4.
x=1
Mblidh 3 me -2.
x=1,y=-4
Sistemi është zgjidhur tani.
2x-y=6,x+y=-3
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}2&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{2}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{1}{3}\left(-3\right)\\-\frac{1}{3}\times 6+\frac{2}{3}\left(-3\right)\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Bëj veprimet.
x=1,y=-4
Nxirr elementet e matricës x dhe y.
2x-y=6,x+y=-3
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
2x-y=6,2x+2y=2\left(-3\right)
Për ta bërë 2x të barabartë me x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 1 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 2.
2x-y=6,2x+2y=-6
Thjeshto.
2x-2x-y-2y=6+6
Zbrit 2x+2y=-6 nga 2x-y=6 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-y-2y=6+6
Mblidh 2x me -2x. Shprehjet 2x dhe -2x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-3y=6+6
Mblidh -y me -2y.
-3y=12
Mblidh 6 me 6.
y=-4
Pjesëto të dyja anët me -3.
x-4=-3
Zëvendëso y me -4 në x+y=-3. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=1
Mblidh 4 në të dyja anët e ekuacionit.
x=1,y=-4
Sistemi është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}