Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2x-3y=3,3x+2y=11
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
2x-3y=3
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
2x=3y+3
Mblidh 3y në të dyja anët e ekuacionit.
x=\frac{1}{2}\left(3y+3\right)
Pjesëto të dyja anët me 2.
x=\frac{3}{2}y+\frac{3}{2}
Shumëzo \frac{1}{2} herë 3+3y.
3\left(\frac{3}{2}y+\frac{3}{2}\right)+2y=11
Zëvendëso x me \frac{3+3y}{2} në ekuacionin tjetër, 3x+2y=11.
\frac{9}{2}y+\frac{9}{2}+2y=11
Shumëzo 3 herë \frac{3+3y}{2}.
\frac{13}{2}y+\frac{9}{2}=11
Mblidh \frac{9y}{2} me 2y.
\frac{13}{2}y=\frac{13}{2}
Zbrit \frac{9}{2} nga të dyja anët e ekuacionit.
y=1
Pjesëto të dyja anët e ekuacionit me \frac{13}{2}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
x=\frac{3+3}{2}
Zëvendëso y me 1 në x=\frac{3}{2}y+\frac{3}{2}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=3
Mblidh \frac{3}{2} me \frac{3}{2} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
x=3,y=1
Sistemi është zgjidhur tani.
2x-3y=3,3x+2y=11
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\11\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}2&-3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}3\\11\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}3\\11\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 3+\frac{3}{13}\times 11\\-\frac{3}{13}\times 3+\frac{2}{13}\times 11\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Bëj veprimet.
x=3,y=1
Nxirr elementet e matricës x dhe y.
2x-3y=3,3x+2y=11
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
3\times 2x+3\left(-3\right)y=3\times 3,2\times 3x+2\times 2y=2\times 11
Për ta bërë 2x të barabartë me 3x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 3 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 2.
6x-9y=9,6x+4y=22
Thjeshto.
6x-6x-9y-4y=9-22
Zbrit 6x+4y=22 nga 6x-9y=9 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-9y-4y=9-22
Mblidh 6x me -6x. Shprehjet 6x dhe -6x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-13y=9-22
Mblidh -9y me -4y.
-13y=-13
Mblidh 9 me -22.
y=1
Pjesëto të dyja anët me -13.
3x+2=11
Zëvendëso y me 1 në 3x+2y=11. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
3x=9
Zbrit 2 nga të dyja anët e ekuacionit.
x=3
Pjesëto të dyja anët me 3.
x=3,y=1
Sistemi është zgjidhur tani.