Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image

Probleme të ngjashme nga kërkimi në ueb

Share

\int _{0}^{4}-0.88x-0.44x^{2}+0.8+0.4x\mathrm{d}x
Apliko vetinë e shpërndarjes duke shumëzuar çdo kufizë të 4.4x-4 me çdo kufizë të -0.2-0.1x.
\int _{0}^{4}-0.48x-0.44x^{2}+0.8\mathrm{d}x
Kombino -0.88x dhe 0.4x për të marrë -0.48x.
\int -\frac{12x}{25}-\frac{11x^{2}}{25}+0.8\mathrm{d}x
Llogarit integralin e pacaktuar në fillim.
\int -\frac{12x}{25}\mathrm{d}x+\int -\frac{11x^{2}}{25}\mathrm{d}x+\int 0.8\mathrm{d}x
Integro shumën kufizë për kufizë.
-\frac{12\int x\mathrm{d}x}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
Faktorizo konstanten në secilën kufizë.
-\frac{6x^{2}}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x\mathrm{d}x me \frac{x^{2}}{2}. Shumëzo -0.48 herë \frac{x^{2}}{2}.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\int 0.8\mathrm{d}x
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x^{2}\mathrm{d}x me \frac{x^{3}}{3}. Shumëzo -0.44 herë \frac{x^{3}}{3}.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\frac{4x}{5}
Gjej integralin e 0.8 nëpërmjet rregullit të tabelës së integraleve të zakonshme \int a\mathrm{d}x=ax.
-\frac{6}{25}\times 4^{2}-\frac{11}{75}\times 4^{3}+0.8\times 4-\left(-\frac{6}{25}\times 0^{2}-\frac{11}{75}\times 0^{3}+0.8\times 0\right)
Integrali i caktuar është funksioni primitiv i shprehjes së llogaritur në kufirin e sipërm të integrimit, minus funksionin primitiv të llogaritur në kufirin e poshtëm të integrimit.
-\frac{752}{75}
Thjeshto.