Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image

Probleme të ngjashme nga kërkimi në ueb

Share

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Përdor teoremën e binomit \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} për të zgjeruar \left(4x-3\right)^{3}.
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Llogarit integralin e pacaktuar në fillim.
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Integro shumën kufizë për kufizë.
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Faktorizo konstanten në secilën kufizë.
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x^{3}\mathrm{d}x me \frac{x^{4}}{4}. Shumëzo 64 herë \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x^{2}\mathrm{d}x me \frac{x^{3}}{3}. Shumëzo -144 herë \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x\mathrm{d}x me \frac{x^{2}}{2}. Shumëzo 108 herë \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
Gjej integralin e -27 nëpërmjet rregullit të tabelës së integraleve të zakonshme \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
Integrali i caktuar është funksioni primitiv i shprehjes së llogaritur në kufirin e sipërm të integrimit, minus funksionin primitiv të llogaritur në kufirin e poshtëm të integrimit.
4305
Thjeshto.