Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Diferenco në lidhje me x
Tick mark Image

Probleme të ngjashme nga kërkimi në ueb

Share

\int \sqrt{x}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x+\int 3x^{\frac{3}{2}}\mathrm{d}x
Integro shumën kufizë për kufizë.
\int \sqrt{x}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x+3\int x^{\frac{3}{2}}\mathrm{d}x
Faktorizo konstanten në secilën kufizë.
\frac{2x^{\frac{3}{2}}}{3}+\int x^{\frac{4}{3}}\mathrm{d}x+3\int x^{\frac{3}{2}}\mathrm{d}x
Rishkruaj \sqrt{x} si x^{\frac{1}{2}}. Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x^{\frac{1}{2}}\mathrm{d}x me \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Thjeshto.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+3\int x^{\frac{3}{2}}\mathrm{d}x
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x^{\frac{4}{3}}\mathrm{d}x me \frac{3x^{\frac{7}{3}}}{7}.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+\frac{6x^{\frac{5}{2}}}{5}
Meqenëse integrali \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} për k\neq -1, zëvendëso integralin \int x^{\frac{3}{2}}\mathrm{d}x me \frac{2x^{\frac{5}{2}}}{5}. Shumëzo 3 herë \frac{2x^{\frac{5}{2}}}{5}.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+\frac{6x^{\frac{5}{2}}}{5}+С
Nëse F\left(x\right) është funksion primitiv i f\left(x\right), atëherë F\left(x\right)+C jep bashkësinë e të gjitha funksioneve primitive të f\left(x\right). Prandaj, shto konstanten e integrimit C\in \mathrm{R} në rezultat.