Vlerëso
-\cos(\theta )+С
Diferenco në lidhje me θ
\sin(\theta )
Share
Kopjuar në clipboard
-\cos(\theta )
Përdor integralin \int \sin(\theta )\mathrm{d}\theta =-\cos(\theta ) nga tabela e integraleve të zakonshme për të fituar rezultatin.
-\cos(\theta )+С
Nëse F\left(\theta \right) është funksion primitiv i f\left(\theta \right), atëherë F\left(\theta \right)+C jep bashkësinë e të gjitha funksioneve primitive të f\left(\theta \right). Prandaj, shto konstanten e integrimit C\in \mathrm{R} në rezultat.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}