Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Diferenco në lidhje me x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

\frac{7\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i x+3 dhe x+2 është \left(x+2\right)\left(x+3\right). Shumëzo \frac{7}{x+3} herë \frac{x+2}{x+2}. Shumëzo \frac{2}{x+2} herë \frac{x+3}{x+3}.
\frac{7\left(x+2\right)+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}
Meqenëse \frac{7\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} dhe \frac{2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{7x+14+2x+6}{\left(x+2\right)\left(x+3\right)}
Bëj shumëzimet në 7\left(x+2\right)+2\left(x+3\right).
\frac{9x+20}{\left(x+2\right)\left(x+3\right)}
Kombino kufizat e ngjashme në 7x+14+2x+6.
\frac{9x+20}{x^{2}+5x+6}
Zhvillo \left(x+2\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)})
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i x+3 dhe x+2 është \left(x+2\right)\left(x+3\right). Shumëzo \frac{7}{x+3} herë \frac{x+2}{x+2}. Shumëzo \frac{2}{x+2} herë \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+2\right)+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)})
Meqenëse \frac{7\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} dhe \frac{2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+14+2x+6}{\left(x+2\right)\left(x+3\right)})
Bëj shumëzimet në 7\left(x+2\right)+2\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x+20}{\left(x+2\right)\left(x+3\right)})
Kombino kufizat e ngjashme në 7x+14+2x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x+20}{x^{2}+3x+2x+6})
Apliko vetinë e shpërndarjes duke shumëzuar çdo kufizë të x+2 me çdo kufizë të x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x+20}{x^{2}+5x+6})
Kombino 3x dhe 2x për të marrë 5x.
\frac{\left(x^{2}+5x^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}x}(9x^{1}+20)-\left(9x^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+5x^{1}+6)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Për dy funksione të diferencueshme të çfarëdoshme, derivati i herësit të dy funksioneve është emëruesi i shumëzuar me derivatin e numëruesit minus numëruesin e shumëzuar me derivatin e emëruesit, të gjithë të pjesëtuar me emëruesin në katror.
\frac{\left(x^{2}+5x^{1}+6\right)\times 9x^{1-1}-\left(9x^{1}+20\right)\left(2x^{2-1}+5x^{1-1}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Derivati i një polinomi është i barabartë me shumën e derivateve të kufizave të tij. Derivati i një kufize konstante është 0. Derivati i ax^{n} është nax^{n-1}.
\frac{\left(x^{2}+5x^{1}+6\right)\times 9x^{0}-\left(9x^{1}+20\right)\left(2x^{1}+5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Thjeshto.
\frac{x^{2}\times 9x^{0}+5x^{1}\times 9x^{0}+6\times 9x^{0}-\left(9x^{1}+20\right)\left(2x^{1}+5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Shumëzo x^{2}+5x^{1}+6 herë 9x^{0}.
\frac{x^{2}\times 9x^{0}+5x^{1}\times 9x^{0}+6\times 9x^{0}-\left(9x^{1}\times 2x^{1}+9x^{1}\times 5x^{0}+20\times 2x^{1}+20\times 5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Shumëzo 9x^{1}+20 herë 2x^{1}+5x^{0}.
\frac{9x^{2}+5\times 9x^{1}+6\times 9x^{0}-\left(9\times 2x^{1+1}+9\times 5x^{1}+20\times 2x^{1}+20\times 5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre.
\frac{9x^{2}+45x^{1}+54x^{0}-\left(18x^{2}+45x^{1}+40x^{1}+100x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Thjeshto.
\frac{-9x^{2}-40x^{1}-46x^{0}}{\left(x^{2}+5x^{1}+6\right)^{2}}
Kombino kufizat e ngjashme.
\frac{-9x^{2}-40x-46x^{0}}{\left(x^{2}+5x+6\right)^{2}}
Për çdo kufizë t, t^{1}=t.
\frac{-9x^{2}-40x-46}{\left(x^{2}+5x+6\right)^{2}}
Për çdo kufizë t, përveç 0, t^{0}=1.