Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image

Probleme të ngjashme nga kërkimi në ueb

Share

\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}
Racionalizo emëruesin e \frac{2}{5-\sqrt{3}} duke shumëzuar numëruesin dhe emëruesin me 5+\sqrt{3}.
\frac{2\left(5+\sqrt{3}\right)}{5^{2}-\left(\sqrt{3}\right)^{2}}
Merr parasysh \left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right). Shumëzimi mund të shndërrohet në diferencë të katrorëve duke përdorur rregullën: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{3}\right)}{25-3}
Ngri në fuqi të dytë 5. Ngri në fuqi të dytë \sqrt{3}.
\frac{2\left(5+\sqrt{3}\right)}{22}
Zbrit 3 nga 25 për të marrë 22.
\frac{1}{11}\left(5+\sqrt{3}\right)
Pjesëto 2\left(5+\sqrt{3}\right) me 22 për të marrë \frac{1}{11}\left(5+\sqrt{3}\right).
\frac{1}{11}\times 5+\frac{1}{11}\sqrt{3}
Përdor vetinë e shpërndarjes për të shumëzuar \frac{1}{11} me 5+\sqrt{3}.
\frac{5}{11}+\frac{1}{11}\sqrt{3}
Shumëzo \frac{1}{11} me 5 për të marrë \frac{5}{11}.