Vlerëso
-\frac{m\left(m+n\right)}{n}
Zhvillo
-\frac{m^{2}+mn}{n}
Share
Kopjuar në clipboard
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo n herë \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Meqenëse \frac{n\left(n-m\right)}{n-m} dhe \frac{n^{2}}{n-m} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Bëj shumëzimet në n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Kombino kufizat e ngjashme në n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Faktorizo n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo 1 herë \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Meqenëse \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} dhe \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Bëj shumëzimet në \left(m+n\right)\left(-m+n\right)+m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Kombino kufizat e ngjashme në -m^{2}+mn-nm+n^{2}+m^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Pjesëto \frac{-nm}{n-m} me \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} duke shumëzuar \frac{-nm}{n-m} me të anasjelltën e \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Thjeshto n\left(-m+n\right) në numërues dhe emërues.
\frac{-m^{2}-mn}{n}
Përdor vetinë e shpërndarjes për të shumëzuar -m me m+n.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo n herë \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Meqenëse \frac{n\left(n-m\right)}{n-m} dhe \frac{n^{2}}{n-m} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Bëj shumëzimet në n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Kombino kufizat e ngjashme në n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Faktorizo n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo 1 herë \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Meqenëse \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} dhe \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Bëj shumëzimet në \left(m+n\right)\left(-m+n\right)+m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Kombino kufizat e ngjashme në -m^{2}+mn-nm+n^{2}+m^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Pjesëto \frac{-nm}{n-m} me \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} duke shumëzuar \frac{-nm}{n-m} me të anasjelltën e \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Thjeshto n\left(-m+n\right) në numërues dhe emërues.
\frac{-m^{2}-mn}{n}
Përdor vetinë e shpërndarjes për të shumëzuar -m me m+n.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}