\frac { a } { a ^ { 2,97 } \times a ^ { 1,38 } }
Diferenco në lidhje me a
-\frac{67}{20a^{4,35}}
Vlerëso
\frac{1}{a^{3,35}}
Share
Kopjuar në clipboard
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{a^{4,35}})
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre. Mblidh 2,97 me 1,38 për të marrë 4,35.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{3,35}})
Rishkruaj a^{4,35} si aa^{3,35}. Thjeshto a në numërues dhe emërues.
-\left(a^{3,35}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{3,35})
Nëse F është përbërja e dy funksioneve të diferencueshme f\left(u\right) dhe u=g\left(x\right), që do të thotë, nëse F\left(x\right)=f\left(g\left(x\right)\right), atëherë derivati i F është derivati i f në lidhje me u i shumëzuar me derivatin e g në lidhje me x, që do të thotë, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{3,35}\right)^{-2}\times 3,35a^{3,35-1}
Derivati i një polinomi është i barabartë me shumën e derivateve të kufizave të tij. Derivati i një kufize konstante është 0. Derivati i ax^{n} është nax^{n-1}.
-3,35a^{2,35}\left(a^{3,35}\right)^{-2}
Thjeshto.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}