Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Diferenco në lidhje me x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

\left(5x^{-2}\right)^{1}\times \frac{1}{5x^{2}}
Përdor rregullat e eksponentëve për të thjeshtuar shprehjen.
5^{1}\left(x^{-2}\right)^{1}\times \frac{1}{5}\times \frac{1}{x^{2}}
Për të ngritur prodhimin e dy ose më shumë numrave në një fuqi, ngri secilin numër në atë fuqi dhe nxirr prodhimin e tyre.
5^{1}\times \frac{1}{5}\left(x^{-2}\right)^{1}\times \frac{1}{x^{2}}
Përdor vetinë e ndërrimit të shumëzimit.
5^{1}\times \frac{1}{5}x^{-2}x^{2\left(-1\right)}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët.
5^{1}\times \frac{1}{5}x^{-2}x^{-2}
Shumëzo 2 herë -1.
5^{1}\times \frac{1}{5}x^{-2-2}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre.
5^{1}\times \frac{1}{5}x^{-4}
Shto eksponentët -2 dhe -2.
5^{1-1}x^{-4}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre.
5^{0}x^{-4}
Shto eksponentët 1 dhe -1.
1x^{-4}
Për çdo kufizë t, përveç 0, t^{0}=1.
x^{-4}
Për çdo kufizë t, t\times 1=t dhe 1t=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{5}x^{-2-2})
Për të pjesëtuar fuqitë me baza të njëjta, zbrit eksponentin e emëruesit nga eksponenti i numëruesit.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{-4})
Bëj veprimet.
-4x^{-4-1}
Derivati i një polinomi është i barabartë me shumën e derivateve të kufizave të tij. Derivati i një kufize konstante është 0. Derivati i ax^{n} është nax^{n-1}.
-4x^{-5}
Bëj veprimet.