Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Diferenco në lidhje me x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1}
Shumëzo 4 me 6 për të marrë 24.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Faktorizo x^{2}-4x+3.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i \left(x-3\right)\left(x-1\right) dhe 3-x është \left(x-3\right)\left(x-1\right). Shumëzo \frac{3}{3-x} herë \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Meqenëse \frac{24}{\left(x-3\right)\left(x-1\right)} dhe \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Bëj shumëzimet në 24-3\left(-1\right)\left(x-1\right).
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Kombino kufizat e ngjashme në 24+3x-3.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i \left(x-3\right)\left(x-1\right) dhe x-1 është \left(x-3\right)\left(x-1\right). Shumëzo \frac{4}{x-1} herë \frac{x-3}{x-3}.
\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Meqenëse \frac{21+3x}{\left(x-3\right)\left(x-1\right)} dhe \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)}
Bëj shumëzimet në 21+3x-4\left(x-3\right).
\frac{33-x}{\left(x-3\right)\left(x-1\right)}
Kombino kufizat e ngjashme në 21+3x-4x+12.
\frac{33-x}{x^{2}-4x+3}
Zhvillo \left(x-3\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1})
Shumëzo 4 me 6 për të marrë 24.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1})
Faktorizo x^{2}-4x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i \left(x-3\right)\left(x-1\right) dhe 3-x është \left(x-3\right)\left(x-1\right). Shumëzo \frac{3}{3-x} herë \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Meqenëse \frac{24}{\left(x-3\right)\left(x-1\right)} dhe \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Bëj shumëzimet në 24-3\left(-1\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Kombino kufizat e ngjashme në 24+3x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i \left(x-3\right)\left(x-1\right) dhe x-1 është \left(x-3\right)\left(x-1\right). Shumëzo \frac{4}{x-1} herë \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Meqenëse \frac{21+3x}{\left(x-3\right)\left(x-1\right)} dhe \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)})
Bëj shumëzimet në 21+3x-4\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{\left(x-3\right)\left(x-1\right)})
Kombino kufizat e ngjashme në 21+3x-4x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{x^{2}-4x+3})
Përdor vetinë e shpërndarjes për të shumëzuar x-3 me x-1 dhe kombino kufizat e ngjashme.
\frac{\left(x^{2}-4x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+33)-\left(-x^{1}+33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Për dy funksione të diferencueshme të çfarëdoshme, derivati i herësit të dy funksioneve është emëruesi i shumëzuar me derivatin e numëruesit minus numëruesin e shumëzuar me derivatin e emëruesit, të gjithë të pjesëtuar me emëruesin në katror.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{1-1}-\left(-x^{1}+33\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Derivati i një polinomi është i barabartë me shumën e derivateve të kufizave të tij. Derivati i një kufize konstante është 0. Derivati i ax^{n} është nax^{n-1}.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Thjeshto.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Shumëzo x^{2}-4x^{1}+3 herë -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-4\right)x^{0}+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Shumëzo -x^{1}+33 herë 2x^{1}-4x^{0}.
\frac{-x^{2}-4\left(-1\right)x^{1}+3\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-4x^{1}\right)+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre.
\frac{-x^{2}+4x^{1}-3x^{0}-\left(-2x^{2}+4x^{1}+66x^{1}-132x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Thjeshto.
\frac{x^{2}-66x^{1}+129x^{0}}{\left(x^{2}-4x^{1}+3\right)^{2}}
Kombino kufizat e ngjashme.
\frac{x^{2}-66x+129x^{0}}{\left(x^{2}-4x+3\right)^{2}}
Për çdo kufizë t, t^{1}=t.
\frac{x^{2}-66x+129\times 1}{\left(x^{2}-4x+3\right)^{2}}
Për çdo kufizë t, përveç 0, t^{0}=1.
\frac{x^{2}-66x+129}{\left(x^{2}-4x+3\right)^{2}}
Për çdo kufizë t, t\times 1=t dhe 1t=t.