Gjej x
x=-\frac{1}{2}=-0.5
x=3
Grafiku
Share
Kopjuar në clipboard
\left(x-2\right)\left(3-x\right)-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
Ndryshorja x nuk mund të jetë e barabartë me asnjërën prej vlerave \frac{1}{3},2 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me \left(x-2\right)\left(3x-1\right), shumëfishin më të vogël të përbashkët të 3x-1,x-2.
5x-x^{2}-6-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
Përdor vetinë e shpërndarjes për të shumëzuar x-2 me 3-x dhe kombino kufizat e ngjashme.
5x-x^{2}-6-\left(3x^{2}-4x+1\right)=-2\left(x-2\right)\left(3x-1\right)
Përdor vetinë e shpërndarjes për të shumëzuar 3x-1 me x-1 dhe kombino kufizat e ngjashme.
5x-x^{2}-6-3x^{2}+4x-1=-2\left(x-2\right)\left(3x-1\right)
Për të gjetur të kundërtën e 3x^{2}-4x+1, gjej të kundërtën e çdo kufize.
5x-4x^{2}-6+4x-1=-2\left(x-2\right)\left(3x-1\right)
Kombino -x^{2} dhe -3x^{2} për të marrë -4x^{2}.
9x-4x^{2}-6-1=-2\left(x-2\right)\left(3x-1\right)
Kombino 5x dhe 4x për të marrë 9x.
9x-4x^{2}-7=-2\left(x-2\right)\left(3x-1\right)
Zbrit 1 nga -6 për të marrë -7.
9x-4x^{2}-7=\left(-2x+4\right)\left(3x-1\right)
Përdor vetinë e shpërndarjes për të shumëzuar -2 me x-2.
9x-4x^{2}-7=-6x^{2}+14x-4
Përdor vetinë e shpërndarjes për të shumëzuar -2x+4 me 3x-1 dhe kombino kufizat e ngjashme.
9x-4x^{2}-7+6x^{2}=14x-4
Shto 6x^{2} në të dyja anët.
9x+2x^{2}-7=14x-4
Kombino -4x^{2} dhe 6x^{2} për të marrë 2x^{2}.
9x+2x^{2}-7-14x=-4
Zbrit 14x nga të dyja anët.
-5x+2x^{2}-7=-4
Kombino 9x dhe -14x për të marrë -5x.
-5x+2x^{2}-7+4=0
Shto 4 në të dyja anët.
-5x+2x^{2}-3=0
Shto -7 dhe 4 për të marrë -3.
2x^{2}-5x-3=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 2, b me -5 dhe c me -3 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Ngri në fuqi të dytë -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Shumëzo -8 herë -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Mblidh 25 me 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Gjej rrënjën katrore të 49.
x=\frac{5±7}{2\times 2}
E kundërta e -5 është 5.
x=\frac{5±7}{4}
Shumëzo 2 herë 2.
x=\frac{12}{4}
Tani zgjidhe ekuacionin x=\frac{5±7}{4} kur ± është plus. Mblidh 5 me 7.
x=3
Pjesëto 12 me 4.
x=-\frac{2}{4}
Tani zgjidhe ekuacionin x=\frac{5±7}{4} kur ± është minus. Zbrit 7 nga 5.
x=-\frac{1}{2}
Thjeshto thyesën \frac{-2}{4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=3 x=-\frac{1}{2}
Ekuacioni është zgjidhur tani.
\left(x-2\right)\left(3-x\right)-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
Ndryshorja x nuk mund të jetë e barabartë me asnjërën prej vlerave \frac{1}{3},2 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me \left(x-2\right)\left(3x-1\right), shumëfishin më të vogël të përbashkët të 3x-1,x-2.
5x-x^{2}-6-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
Përdor vetinë e shpërndarjes për të shumëzuar x-2 me 3-x dhe kombino kufizat e ngjashme.
5x-x^{2}-6-\left(3x^{2}-4x+1\right)=-2\left(x-2\right)\left(3x-1\right)
Përdor vetinë e shpërndarjes për të shumëzuar 3x-1 me x-1 dhe kombino kufizat e ngjashme.
5x-x^{2}-6-3x^{2}+4x-1=-2\left(x-2\right)\left(3x-1\right)
Për të gjetur të kundërtën e 3x^{2}-4x+1, gjej të kundërtën e çdo kufize.
5x-4x^{2}-6+4x-1=-2\left(x-2\right)\left(3x-1\right)
Kombino -x^{2} dhe -3x^{2} për të marrë -4x^{2}.
9x-4x^{2}-6-1=-2\left(x-2\right)\left(3x-1\right)
Kombino 5x dhe 4x për të marrë 9x.
9x-4x^{2}-7=-2\left(x-2\right)\left(3x-1\right)
Zbrit 1 nga -6 për të marrë -7.
9x-4x^{2}-7=\left(-2x+4\right)\left(3x-1\right)
Përdor vetinë e shpërndarjes për të shumëzuar -2 me x-2.
9x-4x^{2}-7=-6x^{2}+14x-4
Përdor vetinë e shpërndarjes për të shumëzuar -2x+4 me 3x-1 dhe kombino kufizat e ngjashme.
9x-4x^{2}-7+6x^{2}=14x-4
Shto 6x^{2} në të dyja anët.
9x+2x^{2}-7=14x-4
Kombino -4x^{2} dhe 6x^{2} për të marrë 2x^{2}.
9x+2x^{2}-7-14x=-4
Zbrit 14x nga të dyja anët.
-5x+2x^{2}-7=-4
Kombino 9x dhe -14x për të marrë -5x.
-5x+2x^{2}=-4+7
Shto 7 në të dyja anët.
-5x+2x^{2}=3
Shto -4 dhe 7 për të marrë 3.
2x^{2}-5x=3
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Pjesëto të dyja anët me 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
Pjesëtimi me 2 zhbën shumëzimin me 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Pjesëto -\frac{5}{2}, koeficientin e kufizës x, me 2 për të marrë -\frac{5}{4}. Më pas mblidh katrorin e -\frac{5}{4} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Ngri në fuqi të dytë -\frac{5}{4} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Mblidh \frac{3}{2} me \frac{25}{16} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Faktori x^{2}-\frac{5}{2}x+\frac{25}{16}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Thjeshto.
x=3 x=-\frac{1}{2}
Mblidh \frac{5}{4} në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}