Vlerëso
-\frac{1}{3b^{6}}
Diferenco në lidhje me b
\frac{2}{b^{7}}
Share
Kopjuar në clipboard
\left(2b^{3}\right)^{1}\times \frac{1}{-6b^{9}}
Përdor rregullat e eksponentëve për të thjeshtuar shprehjen.
2^{1}\left(b^{3}\right)^{1}\times \frac{1}{-6}\times \frac{1}{b^{9}}
Për të ngritur prodhimin e dy ose më shumë numrave në një fuqi, ngri secilin numër në atë fuqi dhe nxirr prodhimin e tyre.
2^{1}\times \frac{1}{-6}\left(b^{3}\right)^{1}\times \frac{1}{b^{9}}
Përdor vetinë e ndërrimit të shumëzimit.
2^{1}\times \frac{1}{-6}b^{3}b^{9\left(-1\right)}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët.
2^{1}\times \frac{1}{-6}b^{3}b^{-9}
Shumëzo 9 herë -1.
2^{1}\times \frac{1}{-6}b^{3-9}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre.
2^{1}\times \frac{1}{-6}b^{-6}
Shto eksponentët 3 dhe -9.
2\times \frac{1}{-6}b^{-6}
Ngri 2 në fuqinë e 1.
2\left(-\frac{1}{6}\right)b^{-6}
Ngri -6 në fuqinë e -1.
-\frac{1}{3}b^{-6}
Shumëzo 2 herë -\frac{1}{6}.
\frac{2^{1}b^{3}}{\left(-6\right)^{1}b^{9}}
Përdor rregullat e eksponentëve për të thjeshtuar shprehjen.
\frac{2^{1}b^{3-9}}{\left(-6\right)^{1}}
Për të pjesëtuar fuqitë me baza të njëjta, zbrit eksponentin e emëruesit nga eksponenti i numëruesit.
\frac{2^{1}b^{-6}}{\left(-6\right)^{1}}
Zbrit 9 nga 3.
-\frac{1}{3}b^{-6}
Thjeshto thyesën \frac{2}{-6} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2}{-6}b^{3-9})
Për të pjesëtuar fuqitë me baza të njëjta, zbrit eksponentin e emëruesit nga eksponenti i numëruesit.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{1}{3}b^{-6})
Bëj veprimet.
-6\left(-\frac{1}{3}\right)b^{-6-1}
Derivati i një polinomi është i barabartë me shumën e derivateve të kufizave të tij. Derivati i një kufize konstante është 0. Derivati i ax^{n} është nax^{n-1}.
2b^{-7}
Bëj veprimet.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}