Gjej a (complex solution)
a=\frac{1}{-4x-1}
x\neq 0\text{ and }x\neq -\frac{1}{4}\text{ and }x\neq -\frac{1}{2}
Gjej x (complex solution)
x=-\frac{1}{4}-\frac{1}{4a}
a\neq 0\text{ and }a\neq -1\text{ and }a\neq 1
Gjej a
a=\frac{1}{-4x-1}
x\neq -\frac{1}{2}\text{ and }x\neq -\frac{1}{4}\text{ and }x\neq 0
Gjej x
x=-\frac{1}{4}-\frac{1}{4a}
a\neq 0\text{ and }|a|\neq 1
Share
Kopjuar në clipboard
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Ndryshorja a nuk mund të jetë e barabartë me asnjërën prej vlerave -1,1 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me \left(a-1\right)\left(a+1\right), shumëfishin më të vogël të përbashkët të a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Përdor vetinë e shpërndarjes për të shumëzuar a+1 me 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Për të gjetur të kundërtën e 2ax+a+2x+1, gjej të kundërtën e çdo kufize.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Zbrit 1 nga 1 për të marrë 0.
-2ax-a-2x=2ax-a-2x+1+a
Përdor vetinë e shpërndarjes për të shumëzuar a-1 me 2x-1.
-2ax-a-2x=2ax-2x+1
Kombino -a dhe a për të marrë 0.
-2ax-a-2x-2ax=-2x+1
Zbrit 2ax nga të dyja anët.
-4ax-a-2x=-2x+1
Kombino -2ax dhe -2ax për të marrë -4ax.
-4ax-a=-2x+1+2x
Shto 2x në të dyja anët.
-4ax-a=1
Kombino -2x dhe 2x për të marrë 0.
\left(-4x-1\right)a=1
Kombino të gjitha kufizat që përmbajnë a.
\frac{\left(-4x-1\right)a}{-4x-1}=\frac{1}{-4x-1}
Pjesëto të dyja anët me -4x-1.
a=\frac{1}{-4x-1}
Pjesëtimi me -4x-1 zhbën shumëzimin me -4x-1.
a=\frac{1}{-4x-1}\text{, }a\neq -1\text{ and }a\neq 1
Ndryshorja a nuk mund të jetë e barabartë me asnjërën prej vlerave -1,1.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Shumëzo të dyja anët e ekuacionit me \left(a-1\right)\left(a+1\right), shumëfishin më të vogël të përbashkët të a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Përdor vetinë e shpërndarjes për të shumëzuar a+1 me 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Për të gjetur të kundërtën e 2ax+a+2x+1, gjej të kundërtën e çdo kufize.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Zbrit 1 nga 1 për të marrë 0.
-2ax-a-2x=2ax-a-2x+1+a
Përdor vetinë e shpërndarjes për të shumëzuar a-1 me 2x-1.
-2ax-a-2x=2ax-2x+1
Kombino -a dhe a për të marrë 0.
-2ax-a-2x-2ax=-2x+1
Zbrit 2ax nga të dyja anët.
-4ax-a-2x=-2x+1
Kombino -2ax dhe -2ax për të marrë -4ax.
-4ax-a-2x+2x=1
Shto 2x në të dyja anët.
-4ax-a=1
Kombino -2x dhe 2x për të marrë 0.
-4ax=1+a
Shto a në të dyja anët.
\left(-4a\right)x=a+1
Ekuacioni është në formën standarde.
\frac{\left(-4a\right)x}{-4a}=\frac{a+1}{-4a}
Pjesëto të dyja anët me -4a.
x=\frac{a+1}{-4a}
Pjesëtimi me -4a zhbën shumëzimin me -4a.
x=-\frac{1}{4}-\frac{1}{4a}
Pjesëto a+1 me -4a.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Ndryshorja a nuk mund të jetë e barabartë me asnjërën prej vlerave -1,1 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me \left(a-1\right)\left(a+1\right), shumëfishin më të vogël të përbashkët të a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Përdor vetinë e shpërndarjes për të shumëzuar a+1 me 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Për të gjetur të kundërtën e 2ax+a+2x+1, gjej të kundërtën e çdo kufize.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Zbrit 1 nga 1 për të marrë 0.
-2ax-a-2x=2ax-a-2x+1+a
Përdor vetinë e shpërndarjes për të shumëzuar a-1 me 2x-1.
-2ax-a-2x=2ax-2x+1
Kombino -a dhe a për të marrë 0.
-2ax-a-2x-2ax=-2x+1
Zbrit 2ax nga të dyja anët.
-4ax-a-2x=-2x+1
Kombino -2ax dhe -2ax për të marrë -4ax.
-4ax-a=-2x+1+2x
Shto 2x në të dyja anët.
-4ax-a=1
Kombino -2x dhe 2x për të marrë 0.
\left(-4x-1\right)a=1
Kombino të gjitha kufizat që përmbajnë a.
\frac{\left(-4x-1\right)a}{-4x-1}=\frac{1}{-4x-1}
Pjesëto të dyja anët me -4x-1.
a=\frac{1}{-4x-1}
Pjesëtimi me -4x-1 zhbën shumëzimin me -4x-1.
a=\frac{1}{-4x-1}\text{, }a\neq -1\text{ and }a\neq 1
Ndryshorja a nuk mund të jetë e barabartë me asnjërën prej vlerave -1,1.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Shumëzo të dyja anët e ekuacionit me \left(a-1\right)\left(a+1\right), shumëfishin më të vogël të përbashkët të a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Përdor vetinë e shpërndarjes për të shumëzuar a+1 me 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Për të gjetur të kundërtën e 2ax+a+2x+1, gjej të kundërtën e çdo kufize.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Zbrit 1 nga 1 për të marrë 0.
-2ax-a-2x=2ax-a-2x+1+a
Përdor vetinë e shpërndarjes për të shumëzuar a-1 me 2x-1.
-2ax-a-2x=2ax-2x+1
Kombino -a dhe a për të marrë 0.
-2ax-a-2x-2ax=-2x+1
Zbrit 2ax nga të dyja anët.
-4ax-a-2x=-2x+1
Kombino -2ax dhe -2ax për të marrë -4ax.
-4ax-a-2x+2x=1
Shto 2x në të dyja anët.
-4ax-a=1
Kombino -2x dhe 2x për të marrë 0.
-4ax=1+a
Shto a në të dyja anët.
\left(-4a\right)x=a+1
Ekuacioni është në formën standarde.
\frac{\left(-4a\right)x}{-4a}=\frac{a+1}{-4a}
Pjesëto të dyja anët me -4a.
x=\frac{a+1}{-4a}
Pjesëtimi me -4a zhbën shumëzimin me -4a.
x=-\frac{1}{4}-\frac{1}{4a}
Pjesëto a+1 me -4a.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}