Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Zhvillo
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo 2 herë \frac{x}{x}.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{2x}{x} dhe \frac{1}{x} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për ta ngritur \frac{2x+1}{x} në një fuqi, ngri numëruesin dhe emëruesin në atë fuqi dhe më pas pjesëtoji.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Shpreh \frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} si një thyesë të vetme.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo 1 herë \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{x}{x} dhe \frac{1}{x} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për ta ngritur \frac{x-1}{x} në një fuqi, ngri numëruesin dhe emëruesin në atë fuqi dhe më pas pjesëtoji.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo x-2 herë \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{\left(x-2\right)x}{x} dhe \frac{1}{x} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
Bëj shumëzimet në \left(x-2\right)x+1.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
Shumëzo \frac{\left(x-1\right)^{2}}{x^{2}} herë \frac{x^{2}-2x+1}{x} duke shumëzuar numëruesin me numëruesin dhe emëruesin me emëruesin.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre. Mblidh 2 me 1 për të marrë 3.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i x^{2}\left(1+x\right) dhe x^{3} është \left(x+1\right)x^{3}. Shumëzo \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} herë \frac{x}{x}. Shumëzo \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} herë \frac{x+1}{x+1}.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} dhe \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Bëj shumëzimet në \left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right).
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Kombino kufizat e ngjashme në 4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
Faktorizo x^{2}+x.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i \left(x+1\right)x^{3} dhe x\left(x+1\right) është \left(x+1\right)x^{3}. Shumëzo \frac{2x+1}{x\left(x+1\right)} herë \frac{x^{2}}{x^{2}}.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Meqenëse \frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} dhe \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
Bëj shumëzimet në 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
Kombino kufizat e ngjashme në 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
Faktorizo shprehjet që nuk janë faktorizuar tashmë në \frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
Thjeshto x+1 në numërues dhe emërues.
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo 2 herë \frac{x}{x}.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{2x}{x} dhe \frac{1}{x} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për ta ngritur \frac{2x+1}{x} në një fuqi, ngri numëruesin dhe emëruesin në atë fuqi dhe më pas pjesëtoji.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Shpreh \frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} si një thyesë të vetme.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo 1 herë \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{x}{x} dhe \frac{1}{x} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Për ta ngritur \frac{x-1}{x} në një fuqi, ngri numëruesin dhe emëruesin në atë fuqi dhe më pas pjesëtoji.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëzo x-2 herë \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{\left(x-2\right)x}{x} dhe \frac{1}{x} kanë të njëjtin emërues, mblidhi duke mbledhur numëruesit e tyre.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
Bëj shumëzimet në \left(x-2\right)x+1.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
Shumëzo \frac{\left(x-1\right)^{2}}{x^{2}} herë \frac{x^{2}-2x+1}{x} duke shumëzuar numëruesin me numëruesin dhe emëruesin me emëruesin.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre. Mblidh 2 me 1 për të marrë 3.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i x^{2}\left(1+x\right) dhe x^{3} është \left(x+1\right)x^{3}. Shumëzo \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} herë \frac{x}{x}. Shumëzo \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} herë \frac{x+1}{x+1}.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Meqenëse \frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} dhe \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Bëj shumëzimet në \left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right).
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Kombino kufizat e ngjashme në 4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
Faktorizo x^{2}+x.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Për të shtuar ose për të zbritur shprehjet, zgjeroji për t'i bërë të njëjtë emëruesit e tyre. Shumëfishi më i vogël i përbashkët i \left(x+1\right)x^{3} dhe x\left(x+1\right) është \left(x+1\right)x^{3}. Shumëzo \frac{2x+1}{x\left(x+1\right)} herë \frac{x^{2}}{x^{2}}.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Meqenëse \frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} dhe \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}} kanë të njëjtin emërues, zbriti duke zbritur numëruesit e tyre.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
Bëj shumëzimet në 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
Kombino kufizat e ngjashme në 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
Faktorizo shprehjet që nuk janë faktorizuar tashmë në \frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
Thjeshto x+1 në numërues dhe emërues.