Vlerëso
6
Faktorizo
2\times 3
Share
Kopjuar në clipboard
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{5}-1}{\sqrt{5}-2}
Racionalizo emëruesin e \frac{\sqrt{5}+1}{\sqrt{5}+2} duke shumëzuar numëruesin dhe emëruesin me \sqrt{5}-2.
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}+\frac{\sqrt{5}-1}{\sqrt{5}-2}
Merr parasysh \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Shumëzimi mund të shndërrohet në diferencë të katrorëve duke përdorur rregullën: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)}{5-4}+\frac{\sqrt{5}-1}{\sqrt{5}-2}
Ngri në fuqi të dytë \sqrt{5}. Ngri në fuqi të dytë 2.
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)}{1}+\frac{\sqrt{5}-1}{\sqrt{5}-2}
Zbrit 4 nga 5 për të marrë 1.
\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)+\frac{\sqrt{5}-1}{\sqrt{5}-2}
Çdo numër i pjesëtuar me një jep po atë numër.
\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)+\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}
Racionalizo emëruesin e \frac{\sqrt{5}-1}{\sqrt{5}-2} duke shumëzuar numëruesin dhe emëruesin me \sqrt{5}+2.
\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)+\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Merr parasysh \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Shumëzimi mund të shndërrohet në diferencë të katrorëve duke përdorur rregullën: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)+\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)}{5-4}
Ngri në fuqi të dytë \sqrt{5}. Ngri në fuqi të dytë 2.
\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)+\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)}{1}
Zbrit 4 nga 5 për të marrë 1.
\left(\sqrt{5}+1\right)\left(\sqrt{5}-2\right)+\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)
Çdo numër i pjesëtuar me një jep po atë numër.
\left(\sqrt{5}\right)^{2}-2\sqrt{5}+\sqrt{5}-2+\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)
Apliko vetinë e shpërndarjes duke shumëzuar çdo kufizë të \sqrt{5}+1 me çdo kufizë të \sqrt{5}-2.
5-2\sqrt{5}+\sqrt{5}-2+\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)
Katrori i \sqrt{5} është 5.
5-\sqrt{5}-2+\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)
Kombino -2\sqrt{5} dhe \sqrt{5} për të marrë -\sqrt{5}.
3-\sqrt{5}+\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)
Zbrit 2 nga 5 për të marrë 3.
3-\sqrt{5}+\left(\sqrt{5}\right)^{2}+2\sqrt{5}-\sqrt{5}-2
Apliko vetinë e shpërndarjes duke shumëzuar çdo kufizë të \sqrt{5}-1 me çdo kufizë të \sqrt{5}+2.
3-\sqrt{5}+5+2\sqrt{5}-\sqrt{5}-2
Katrori i \sqrt{5} është 5.
3-\sqrt{5}+5+\sqrt{5}-2
Kombino 2\sqrt{5} dhe -\sqrt{5} për të marrë \sqrt{5}.
3-\sqrt{5}+3+\sqrt{5}
Zbrit 2 nga 5 për të marrë 3.
6-\sqrt{5}+\sqrt{5}
Shto 3 dhe 3 për të marrë 6.
6
Kombino -\sqrt{5} dhe \sqrt{5} për të marrë 0.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}