Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Zhvillo
Tick mark Image

Probleme të ngjashme nga kërkimi në ueb

Share

\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Përdor teoremën e binomit \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} për të zgjeruar \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Përdor vetinë e shpërndarjes për të shumëzuar \frac{1}{2}a-\frac{2}{3}b me \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} dhe kombino kufizat e ngjashme.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Merr parasysh \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Shumëzimi mund të shndërrohet në diferencë të katrorëve duke përdorur rregullën: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Zhvillo \left(\frac{1}{4}a^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 2 me 2 për të marrë 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Llogarit \frac{1}{4} në fuqi të 2 dhe merr \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Zhvillo \left(\frac{4}{9}b^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 2 me 2 për të marrë 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Llogarit \frac{4}{9} në fuqi të 2 dhe merr \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Për të gjetur të kundërtën e \frac{1}{16}a^{4}-\frac{16}{81}b^{4}, gjej të kundërtën e çdo kufize.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombino \frac{1}{16}a^{4} dhe -\frac{1}{16}a^{4} për të marrë 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombino -\frac{16}{81}b^{4} dhe \frac{16}{81}b^{4} për të marrë 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
Përdor vetinë e shpërndarjes për të shumëzuar -\frac{1}{3}ab me \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
Kombino \frac{1}{6}a^{3}b dhe -\frac{1}{6}a^{3}b për të marrë 0.
\left(-\frac{1}{3}ab^{3}\right)^{3}
Kombino -\frac{8}{27}ab^{3} dhe -\frac{1}{27}ab^{3} për të marrë -\frac{1}{3}ab^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
Zhvillo \left(-\frac{1}{3}ab^{3}\right)^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 3 me 3 për të marrë 9.
-\frac{1}{27}a^{3}b^{9}
Llogarit -\frac{1}{3} në fuqi të 3 dhe merr -\frac{1}{27}.
\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Përdor teoremën e binomit \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} për të zgjeruar \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Përdor vetinë e shpërndarjes për të shumëzuar \frac{1}{2}a-\frac{2}{3}b me \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} dhe kombino kufizat e ngjashme.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Merr parasysh \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Shumëzimi mund të shndërrohet në diferencë të katrorëve duke përdorur rregullën: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Zhvillo \left(\frac{1}{4}a^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 2 me 2 për të marrë 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Llogarit \frac{1}{4} në fuqi të 2 dhe merr \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Zhvillo \left(\frac{4}{9}b^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 2 me 2 për të marrë 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Llogarit \frac{4}{9} në fuqi të 2 dhe merr \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Për të gjetur të kundërtën e \frac{1}{16}a^{4}-\frac{16}{81}b^{4}, gjej të kundërtën e çdo kufize.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombino \frac{1}{16}a^{4} dhe -\frac{1}{16}a^{4} për të marrë 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombino -\frac{16}{81}b^{4} dhe \frac{16}{81}b^{4} për të marrë 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
Përdor vetinë e shpërndarjes për të shumëzuar -\frac{1}{3}ab me \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
Kombino \frac{1}{6}a^{3}b dhe -\frac{1}{6}a^{3}b për të marrë 0.
\left(-\frac{1}{3}ab^{3}\right)^{3}
Kombino -\frac{8}{27}ab^{3} dhe -\frac{1}{27}ab^{3} për të marrë -\frac{1}{3}ab^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
Zhvillo \left(-\frac{1}{3}ab^{3}\right)^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 3 me 3 për të marrë 9.
-\frac{1}{27}a^{3}b^{9}
Llogarit -\frac{1}{3} në fuqi të 3 dhe merr -\frac{1}{27}.