Preskoči na glavno vsebino
Microsoft
|
Math Solver
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Osnoven
algebra
Trigonometrija
Računa
statistika
Matrike
Znakov
Rešitev za x
x=\pi n_{1}+\arctan(2)\text{, }n_{1}\in \mathrm{Z}
x=\pi n_{2}+\pi -\arctan(2)\text{, }n_{2}\in \mathrm{Z}
Graf
Nariši obe strani v 2D
Nariši v 2D
Kviz
Trigonometry
{ \tan ( x ) } ^ {2} = 4
Podobne težave pri spletnem iskanju
How do you find the derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-find-the-derivative-of-1-tanx-2
Derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} is \displaystyle-{2}{{\sec}^{{2}}{x}}+{2}{\tan{{x}}}{{\sec}^{{2}}{x}} Explanation: We can use Chain rule here. Let \displaystyle{f{{\left({x}\right)}}}={\left({1}-{\tan{{x}}}\right)}^{{2}} ...
How do you multiply and simplify \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-multiply-and-simplify-1-tanx-2
see below Explanation: \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}}={\left({1}+{\tan{{x}}}\right)}{\left({1}+{\tan{{x}}}\right)} ---> FOIL \displaystyle={1}+{\tan{{x}}}+{\tan{{x}}}+{{\tan}^{{2}}{x}} ...
How to integrate (x+\tan x)^2
https://www.quora.com/How-do-I-integrate-x-tan-x-2
Open the brackets. You then have three separate integrals. The first \int x^2dx is simple and equal to \frac {x^3}{3}. The second \int\tan^2xdx is also simple if you remember that \frac {d (\tan x)}{dx}=1+\tan^{2}x ...
Deducing the series expansion of \arctan(x^2) via the series expansion of \arctan(x) at x=0
https://math.stackexchange.com/questions/1652236/deducing-the-series-expansion-of-arctanx2-via-the-series-expansion-of-ar
This approach is perfectly valid. When we have a series \sum_{n=0}^\infty a_nx^n then replacing x\mapsto x^2 we get \sum_{n=0}^\infty a_nx^{2n}=\sum_{n=0}^\infty b_nx^n which is a power ...
\displaystyle{{\tan}^{{2}}{\left({x}\right)}}={0} How can you solve for \displaystyle{x} ?
https://socratic.org/questions/tan-2-x-0-how-can-you-solve-for-x
\displaystyle{x}={k}\pi,{k}\in{Z} Explanation: \displaystyle{{\tan}^{{2}}{x}}={0}\Rightarrow{\left({\tan{{x}}}\right)}^{{2}}={0}\Rightarrow{\tan{{x}}}={0}\Rightarrow{\sin{{x}}}={0} \displaystyle\Rightarrow{x}={k}\pi,{k}\in{Z}
How many solutions does a trigonometric function have 0\le x \le 2\pi?
https://math.stackexchange.com/questions/2118471/how-many-solutions-does-a-trigonometric-function-have-0-le-x-le-2-pi
I do one, you do the other: \tan^22x=1\iff \tan 2x=\pm1\iff 2x=\pm\frac\pi4+k\pi\;,\;\;k\in\Bbb Z\iff \iff x=\pm\frac\pi8+k\frac\pi2\;,\;\;k\in\Bbb Z Hint for the other: \sin3x=-\frac14\iff3x=\arcsin\left(-\frac14\right)+2k\pi\ldots\ldots\text{etc.}
Več Elemente
Delež
Kopirati
Kopirano v odložišče
Podobne težave
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Nazaj na vrh