Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}+5x+9-5=0
Odčítajte 5 z oboch strán.
x^{2}+5x+4=0
Odčítajte 5 z 9 a dostanete 4.
a+b=5 ab=4
Ak chcete vyriešiť rovnicu, faktor x^{2}+5x+4 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
1,4 2,2
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je kladné, a a b sú oba kladné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 4.
1+4=5 2+2=4
Vypočítajte súčet pre každý pár.
a=1 b=4
Riešenie je pár, ktorá poskytuje 5 súčtu.
\left(x+1\right)\left(x+4\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=-1 x=-4
Ak chcete nájsť riešenia rovníc, vyriešte x+1=0 a x+4=0.
x^{2}+5x+9-5=0
Odčítajte 5 z oboch strán.
x^{2}+5x+4=0
Odčítajte 5 z 9 a dostanete 4.
a+b=5 ab=1\times 4=4
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+4. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
1,4 2,2
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je kladné, a a b sú oba kladné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 4.
1+4=5 2+2=4
Vypočítajte súčet pre každý pár.
a=1 b=4
Riešenie je pár, ktorá poskytuje 5 súčtu.
\left(x^{2}+x\right)+\left(4x+4\right)
Zapíšte x^{2}+5x+4 ako výraz \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
x na prvej skupine a 4 v druhá skupina.
\left(x+1\right)\left(x+4\right)
Vyberte spoločný člen x+1 pred zátvorku pomocou distributívneho zákona.
x=-1 x=-4
Ak chcete nájsť riešenia rovníc, vyriešte x+1=0 a x+4=0.
x^{2}+5x+9=5
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x^{2}+5x+9-5=5-5
Odčítajte hodnotu 5 od oboch strán rovnice.
x^{2}+5x+9-5=0
Výsledkom odčítania čísla 5 od seba samého bude 0.
x^{2}+5x+4=0
Odčítajte číslo 5 od čísla 9.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, 5 za b a 4 za c.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
Umocnite číslo 5.
x=\frac{-5±\sqrt{25-16}}{2}
Vynásobte číslo -4 číslom 4.
x=\frac{-5±\sqrt{9}}{2}
Prirátajte 25 ku -16.
x=\frac{-5±3}{2}
Vypočítajte druhú odmocninu čísla 9.
x=-\frac{2}{2}
Vyriešte rovnicu x=\frac{-5±3}{2}, keď ± je plus. Prirátajte -5 ku 3.
x=-1
Vydeľte číslo -2 číslom 2.
x=-\frac{8}{2}
Vyriešte rovnicu x=\frac{-5±3}{2}, keď ± je mínus. Odčítajte číslo 3 od čísla -5.
x=-4
Vydeľte číslo -8 číslom 2.
x=-1 x=-4
Teraz je rovnica vyriešená.
x^{2}+5x+9=5
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
x^{2}+5x+9-9=5-9
Odčítajte hodnotu 9 od oboch strán rovnice.
x^{2}+5x=5-9
Výsledkom odčítania čísla 9 od seba samého bude 0.
x^{2}+5x=-4
Odčítajte číslo 9 od čísla 5.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
Číslo 5, koeficient člena x, vydeľte číslom 2 a získajte výsledok \frac{5}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu \frac{5}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
Umocnite zlomok \frac{5}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
Prirátajte -4 ku \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
Rozložte x^{2}+5x+\frac{25}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
Zjednodušte.
x=-1 x=-4
Odčítajte hodnotu \frac{5}{2} od oboch strán rovnice.