Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-2)-\left(3x^{2}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{1}-5\right)\times 2\times 3x^{2-1}-\left(3x^{2}-2\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 6x^{1}-\left(3x^{2}-2\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Počítajte.
\frac{x^{1}\times 6x^{1}-5\times 6x^{1}-\left(3x^{2}x^{0}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Rozšírte s použitím distributívneho zákona.
\frac{6x^{1+1}-5\times 6x^{1}-\left(3x^{2}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{6x^{2}-30x^{1}-\left(3x^{2}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Počítajte.
\frac{6x^{2}-30x^{1}-3x^{2}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Odstráňte nepotrebné zátvorky.
\frac{\left(6-3\right)x^{2}-30x^{1}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Zlúčte podobné členy.
\frac{3x^{2}-30x^{1}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Odčítajte číslo 3 od čísla 6.
\frac{3x^{2}-30x-\left(-2x^{0}\right)}{\left(x-5\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{3x^{2}-30x-\left(-2\right)}{\left(x-5\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.