Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

a+b=10 ab=25
Ak chcete vyriešiť rovnicu, rozložte na faktory x^{2}+10x+25 použitím vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém, ktorý sa má vyriešiť.
1,25 5,5
Keďže ab je kladná, a a b majú rovnaké znamienko. Keďže a+b je kladná, a a b sú pozitívne. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 25.
1+25=26 5+5=10
Vypočítajte súčet pre každý pár.
a=5 b=5
Riešením je dvojica, ktorá poskytuje súčet 10.
\left(x+5\right)\left(x+5\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
\left(x+5\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
x=-5
Ak chcete nájsť riešenie rovnice, vyriešte x+5=0.
a+b=10 ab=1\times 25=25
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+25. Ak chcete nájsť a a b, nastavte systém, ktorý sa má vyriešiť.
1,25 5,5
Keďže ab je kladná, a a b majú rovnaké znamienko. Keďže a+b je kladná, a a b sú pozitívne. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 25.
1+25=26 5+5=10
Vypočítajte súčet pre každý pár.
a=5 b=5
Riešením je dvojica, ktorá poskytuje súčet 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Zapíšte x^{2}+10x+25 ako výraz \left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Vyčleňte x v prvej a 5 v druhej skupine.
\left(x+5\right)\left(x+5\right)
Vyberte spoločný člen x+5 pred zátvorku pomocou distributívneho zákona.
\left(x+5\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
x=-5
Ak chcete nájsť riešenie rovnice, vyriešte x+5=0.
x^{2}+10x+25=0
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, 10 za b a 25 za c.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Umocnite číslo 10.
x=\frac{-10±\sqrt{100-100}}{2}
Vynásobte číslo -4 číslom 25.
x=\frac{-10±\sqrt{0}}{2}
Prirátajte 100 ku -100.
x=-\frac{10}{2}
Vypočítajte druhú odmocninu čísla 0.
x=-5
Vydeľte číslo -10 číslom 2.
\left(x+5\right)^{2}=0
Rozložte výraz x^{2}+10x+25 na činitele. Keď je výraz x^{2}+bx+c dokonalou mocninou, vo všeobecnosti sa vždy dá rozložiť na činitele ako je \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Vypočítajte druhú odmocninu oboch strán rovnice.
x+5=0 x+5=0
Zjednodušte.
x=-5 x=-5
Odčítajte hodnotu 5 od oboch strán rovnice.
x=-5
Teraz je rovnica vyriešená. Riešenia sú rovnaké.