Skočiť na hlavný obsah
Derivovať podľa x
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}\left(Ex-4\right)}{Ex-4}+\frac{5}{Ex-4})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo x^{2} číslom \frac{Ex-4}{Ex-4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}\left(Ex-4\right)+5}{Ex-4})
Keďže \frac{x^{2}\left(Ex-4\right)}{Ex-4} a \frac{5}{Ex-4} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}E-4x^{2}+5}{Ex-4})
Vynásobiť vo výraze x^{2}\left(Ex-4\right)+5.
\frac{\left(Ex^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(Ex^{3}-4x^{2}+5)-\left(Ex^{3}-4x^{2}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(Ex^{1}-4)}{\left(Ex^{1}-4\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(Ex^{1}-4\right)\left(3Ex^{3-1}+2\left(-4\right)x^{2-1}\right)-\left(Ex^{3}-4x^{2}+5\right)Ex^{1-1}}{\left(Ex^{1}-4\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(Ex^{1}-4\right)\left(3Ex^{2}-8x^{1}\right)-\left(Ex^{3}-4x^{2}+5\right)Ex^{0}}{\left(Ex^{1}-4\right)^{2}}
Zjednodušte.
\frac{Ex^{1}\times 3Ex^{2}+Ex^{1}\left(-8\right)x^{1}-4\times 3Ex^{2}-4\left(-8\right)x^{1}-\left(Ex^{3}-4x^{2}+5\right)Ex^{0}}{\left(Ex^{1}-4\right)^{2}}
Vynásobte číslo Ex^{1}-4 číslom 3Ex^{2}-8x^{1}.
\frac{Ex^{1}\times 3Ex^{2}+Ex^{1}\left(-8\right)x^{1}-4\times 3Ex^{2}-4\left(-8\right)x^{1}-\left(Ex^{3}Ex^{0}-4x^{2}Ex^{0}+5Ex^{0}\right)}{\left(Ex^{1}-4\right)^{2}}
Vynásobte číslo Ex^{3}-4x^{2}+5 číslom Ex^{0}.
\frac{E\times 3Ex^{1+2}+E\left(-8\right)x^{1+1}-4\times 3Ex^{2}-4\left(-8\right)x^{1}-\left(EEx^{3}-4Ex^{2}+5Ex^{0}\right)}{\left(Ex^{1}-4\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{3E^{2}x^{3}+\left(-8E\right)x^{2}+\left(-12E\right)x^{2}+32x^{1}-\left(E^{2}x^{3}+\left(-4E\right)x^{2}+5Ex^{0}\right)}{\left(Ex^{1}-4\right)^{2}}
Zjednodušte.
\frac{2E^{2}x^{3}+\left(-4E\right)x^{2}+\left(-12E\right)x^{2}+32x^{1}-5Ex^{0}}{\left(Ex^{1}-4\right)^{2}}
Zlúčte podobné členy.
\frac{2E^{2}x^{3}+\left(-4E\right)x^{2}+\left(-12E\right)x^{2}+32x-5Ex^{0}}{\left(Ex-4\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{2E^{2}x^{3}+\left(-4E\right)x^{2}+\left(-12E\right)x^{2}+32x-5E\times 1}{\left(Ex-4\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
\frac{2E^{2}x^{3}+\left(-4E\right)x^{2}+\left(-12E\right)x^{2}+32x-5E}{\left(Ex-4\right)^{2}}
Pre akýkoľvek člen t, t\times 1=t a 1t=t.