Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\frac{x\left(x+1\right)}{x+1}+\frac{2}{x+1}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo x číslom \frac{x+1}{x+1}.
\frac{x\left(x+1\right)+2}{x+1}
Keďže \frac{x\left(x+1\right)}{x+1} a \frac{2}{x+1} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{x^{2}+x+2}{x+1}
Vynásobiť vo výraze x\left(x+1\right)+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+1\right)}{x+1}+\frac{2}{x+1})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo x číslom \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+1\right)+2}{x+1})
Keďže \frac{x\left(x+1\right)}{x+1} a \frac{2}{x+1} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x+2}{x+1})
Vynásobiť vo výraze x\left(x+1\right)+2.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}+2)-\left(x^{2}+x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{1}+1\right)\left(2x^{2-1}+x^{1-1}\right)-\left(x^{2}+x^{1}+2\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{1}+1\right)\left(2x^{1}+x^{0}\right)-\left(x^{2}+x^{1}+2\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Zjednodušte.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}+2x^{1}+x^{0}-\left(x^{2}+x^{1}+2\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Vynásobte číslo x^{1}+1 číslom 2x^{1}+x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}+2x^{1}+x^{0}-\left(x^{2}x^{0}+x^{1}x^{0}+2x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Vynásobte číslo x^{2}+x^{1}+2 číslom x^{0}.
\frac{2x^{1+1}+x^{1}+2x^{1}+x^{0}-\left(x^{2}+x^{1}+2x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{2x^{2}+x^{1}+2x^{1}+x^{0}-\left(x^{2}+x^{1}+2x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Zjednodušte.
\frac{x^{2}+2x^{1}-x^{0}}{\left(x^{1}+1\right)^{2}}
Zlúčte podobné členy.
\frac{x^{2}+2x-x^{0}}{\left(x+1\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{x^{2}+2x-1}{\left(x+1\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.