Riešenie pre w
w = \frac{\sqrt{33} + 1}{2} \approx 3,372281323
w=\frac{1-\sqrt{33}}{2}\approx -2,372281323
Zdieľať
Skopírované do schránky
w^{2}-w=8
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
w^{2}-w-8=8-8
Odčítajte hodnotu 8 od oboch strán rovnice.
w^{2}-w-8=0
Výsledkom odčítania čísla 8 od seba samého bude 0.
w=\frac{-\left(-1\right)±\sqrt{1-4\left(-8\right)}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -1 za b a -8 za c.
w=\frac{-\left(-1\right)±\sqrt{1+32}}{2}
Vynásobte číslo -4 číslom -8.
w=\frac{-\left(-1\right)±\sqrt{33}}{2}
Prirátajte 1 ku 32.
w=\frac{1±\sqrt{33}}{2}
Opak čísla -1 je 1.
w=\frac{\sqrt{33}+1}{2}
Vyriešte rovnicu w=\frac{1±\sqrt{33}}{2}, keď ± je plus. Prirátajte 1 ku \sqrt{33}.
w=\frac{1-\sqrt{33}}{2}
Vyriešte rovnicu w=\frac{1±\sqrt{33}}{2}, keď ± je mínus. Odčítajte číslo \sqrt{33} od čísla 1.
w=\frac{\sqrt{33}+1}{2} w=\frac{1-\sqrt{33}}{2}
Teraz je rovnica vyriešená.
w^{2}-w=8
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
w^{2}-w+\left(-\frac{1}{2}\right)^{2}=8+\left(-\frac{1}{2}\right)^{2}
Číslo -1, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{1}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{1}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
w^{2}-w+\frac{1}{4}=8+\frac{1}{4}
Umocnite zlomok -\frac{1}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
w^{2}-w+\frac{1}{4}=\frac{33}{4}
Prirátajte 8 ku \frac{1}{4}.
\left(w-\frac{1}{2}\right)^{2}=\frac{33}{4}
Rozložte w^{2}-w+\frac{1}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{1}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
w-\frac{1}{2}=\frac{\sqrt{33}}{2} w-\frac{1}{2}=-\frac{\sqrt{33}}{2}
Zjednodušte.
w=\frac{\sqrt{33}+1}{2} w=\frac{1-\sqrt{33}}{2}
Prirátajte \frac{1}{2} ku obom stranám rovnice.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}