Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Rozšíriť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
Čitateľa aj menovateľa pre \frac{2}{4-3i} vynásobte komplexne združeným číslom menovateľa 4+3i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
Podľa definície je i^{2} -1. Vypočítajte menovateľ.
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
Vynásobte číslo 2 číslom 4+3i.
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
Vynásobiť vo výraze 2\times 4+2\times \left(3i\right).
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
Vydeľte číslo 8+6i číslom 25 a dostanete \frac{8}{25}+\frac{6}{25}i.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
Vynásobte komplexné čísla \frac{8}{25}+\frac{6}{25}i a 2-5i podobne, ako sa násobia dvojčleny.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
Podľa definície je i^{2} -1.
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
Vynásobiť vo výraze \frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right).
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
Kombinovať reálne a imaginárne súčasti v \frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}.
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
Vykonávať sčítanie vo výraze \frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
Čitateľa aj menovateľa pre \frac{2}{4-3i} vynásobte komplexne združeným číslom menovateľa 4+3i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
Podľa definície je i^{2} -1. Vypočítajte menovateľ.
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
Vynásobte číslo 2 číslom 4+3i.
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
Vynásobiť vo výraze 2\times 4+2\times \left(3i\right).
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
Vydeľte číslo 8+6i číslom 25 a dostanete \frac{8}{25}+\frac{6}{25}i.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
Vynásobte komplexné čísla \frac{8}{25}+\frac{6}{25}i a 2-5i podobne, ako sa násobia dvojčleny.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
Podľa definície je i^{2} -1.
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
Vynásobiť vo výraze \frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right).
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
Kombinovať reálne a imaginárne súčasti v \frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}.
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
Vykonávať sčítanie vo výraze \frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i.