Riešenie pre h
h=\frac{x\left(x+7\right)}{2}
x\neq -7\text{ and }x\neq 0
Riešenie pre x (complex solution)
x=\frac{\sqrt{8h+49}-7}{2}
x=\frac{-\sqrt{8h+49}-7}{2}\text{, }h\neq 0
Riešenie pre x
x=\frac{\sqrt{8h+49}-7}{2}
x=\frac{-\sqrt{8h+49}-7}{2}\text{, }h\neq 0\text{ and }h\geq -\frac{49}{8}
Graf
Zdieľať
Skopírované do schránky
h^{-1}x\left(x+7\right)=2
Vynásobte obe strany rovnice premennou x+7.
h^{-1}x^{2}+7h^{-1}x=2
Použite distributívny zákon na vynásobenie h^{-1}x a x+7.
\frac{1}{h}x^{2}+7\times \frac{1}{h}x=2
Zmeňte poradie členov.
1x^{2}+7\times 1x=2h
Premenná h sa nemôže rovnať 0, pretože delenie nulou nie je definované. Vynásobte obe strany rovnice premennou h.
1x^{2}+7x=2h
Vynásobením 7 a 1 získate 7.
2h=1x^{2}+7x
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
2h=x^{2}+7x
Zmeňte poradie členov.
\frac{2h}{2}=\frac{x\left(x+7\right)}{2}
Vydeľte obe strany hodnotou 2.
h=\frac{x\left(x+7\right)}{2}
Delenie číslom 2 ruší násobenie číslom 2.
h=\frac{x\left(x+7\right)}{2}\text{, }h\neq 0
Premenná h sa nemôže rovnať 0.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}