Rozložiť na faktory
\left(2x-5\right)\left(x+1\right)
Vyhodnotiť
\left(2x-5\right)\left(x+1\right)
Graf
Zdieľať
Skopírované do schránky
a+b=-3 ab=2\left(-5\right)=-10
Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru 2x^{2}+ax+bx-5. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
1,-10 2,-5
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je záporná hodnota, záporné číslo má vyššiu absolútnu hodnotu ako kladné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -10.
1-10=-9 2-5=-3
Vypočítajte súčet pre každý pár.
a=-5 b=2
Riešenie je pár, ktorá poskytuje -3 súčtu.
\left(2x^{2}-5x\right)+\left(2x-5\right)
Zapíšte 2x^{2}-3x-5 ako výraz \left(2x^{2}-5x\right)+\left(2x-5\right).
x\left(2x-5\right)+2x-5
Vyčleňte x z výrazu 2x^{2}-5x.
\left(2x-5\right)\left(x+1\right)
Vyberte spoločný člen 2x-5 pred zátvorku pomocou distributívneho zákona.
2x^{2}-3x-5=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Umocnite číslo -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Vynásobte číslo -4 číslom 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Vynásobte číslo -8 číslom -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Prirátajte 9 ku 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
Vypočítajte druhú odmocninu čísla 49.
x=\frac{3±7}{2\times 2}
Opak čísla -3 je 3.
x=\frac{3±7}{4}
Vynásobte číslo 2 číslom 2.
x=\frac{10}{4}
Vyriešte rovnicu x=\frac{3±7}{4}, keď ± je plus. Prirátajte 3 ku 7.
x=\frac{5}{2}
Vykráťte zlomok \frac{10}{4} na základný tvar extrakciou a elimináciou 2.
x=-\frac{4}{4}
Vyriešte rovnicu x=\frac{3±7}{4}, keď ± je mínus. Odčítajte číslo 7 od čísla 3.
x=-1
Vydeľte číslo -4 číslom 4.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x-\left(-1\right)\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte \frac{5}{2} a za x_{2} dosaďte -1.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x+1\right)
Zjednodušiť všetky výrazy v podobe p-\left(-q\right) na p+q.
2x^{2}-3x-5=2\times \frac{2x-5}{2}\left(x+1\right)
Odčítajte zlomok \frac{5}{2} od zlomku x tak, že nájdete spoločného menovateľa a odčítate čitateľov. Ak je to možné, zlomok potom čo najviac vykráťte.
2x^{2}-3x-5=\left(2x-5\right)\left(x+1\right)
Vykrátiť najväčšieho spoločného deliteľa 2 v 2 a 2.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}