Skočiť na hlavný obsah
Derivovať podľa x
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\frac{\left(-x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1})-5x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+7)}{\left(-x^{1}+7\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(-x^{1}+7\right)\times 5x^{1-1}-5x^{1}\left(-1\right)x^{1-1}}{\left(-x^{1}+7\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(-x^{1}+7\right)\times 5x^{0}-5x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+7\right)^{2}}
Počítajte.
\frac{-x^{1}\times 5x^{0}+7\times 5x^{0}-5x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+7\right)^{2}}
Rozšírte s použitím distributívneho zákona.
\frac{-5x^{1}+7\times 5x^{0}-5\left(-1\right)x^{1}}{\left(-x^{1}+7\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{-5x^{1}+35x^{0}-\left(-5x^{1}\right)}{\left(-x^{1}+7\right)^{2}}
Počítajte.
\frac{\left(-5-\left(-5\right)\right)x^{1}+35x^{0}}{\left(-x^{1}+7\right)^{2}}
Zlúčte podobné členy.
\frac{35x^{0}}{\left(-x^{1}+7\right)^{2}}
Odčítajte číslo -5 od čísla -5.
\frac{35x^{0}}{\left(-x+7\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{35\times 1}{\left(-x+7\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
\frac{35}{\left(-x+7\right)^{2}}
Pre akýkoľvek člen t, t\times 1=t a 1t=t.