Riešenie pre b
b=-1+\sqrt{19}i\approx -1+4,358898944i
b=-\sqrt{19}i-1\approx -1-4,358898944i
Zdieľať
Skopírované do schránky
b^{2}+2b=-20
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
b^{2}+2b-\left(-20\right)=-20-\left(-20\right)
Prirátajte 20 ku obom stranám rovnice.
b^{2}+2b-\left(-20\right)=0
Výsledkom odčítania čísla -20 od seba samého bude 0.
b^{2}+2b+20=0
Odčítajte číslo -20 od čísla 0.
b=\frac{-2±\sqrt{2^{2}-4\times 20}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, 2 za b a 20 za c.
b=\frac{-2±\sqrt{4-4\times 20}}{2}
Umocnite číslo 2.
b=\frac{-2±\sqrt{4-80}}{2}
Vynásobte číslo -4 číslom 20.
b=\frac{-2±\sqrt{-76}}{2}
Prirátajte 4 ku -80.
b=\frac{-2±2\sqrt{19}i}{2}
Vypočítajte druhú odmocninu čísla -76.
b=\frac{-2+2\sqrt{19}i}{2}
Vyriešte rovnicu b=\frac{-2±2\sqrt{19}i}{2}, keď ± je plus. Prirátajte -2 ku 2i\sqrt{19}.
b=-1+\sqrt{19}i
Vydeľte číslo -2+2i\sqrt{19} číslom 2.
b=\frac{-2\sqrt{19}i-2}{2}
Vyriešte rovnicu b=\frac{-2±2\sqrt{19}i}{2}, keď ± je mínus. Odčítajte číslo 2i\sqrt{19} od čísla -2.
b=-\sqrt{19}i-1
Vydeľte číslo -2-2i\sqrt{19} číslom 2.
b=-1+\sqrt{19}i b=-\sqrt{19}i-1
Teraz je rovnica vyriešená.
b^{2}+2b=-20
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
b^{2}+2b+1^{2}=-20+1^{2}
Číslo 2, koeficient člena x, vydeľte číslom 2 a získajte výsledok 1. Potom pridajte k obidvom stranám rovnice druhú mocninu 1. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
b^{2}+2b+1=-20+1
Umocnite číslo 1.
b^{2}+2b+1=-19
Prirátajte -20 ku 1.
\left(b+1\right)^{2}=-19
Rozložte b^{2}+2b+1 na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+1\right)^{2}}=\sqrt{-19}
Vypočítajte druhú odmocninu oboch strán rovnice.
b+1=\sqrt{19}i b+1=-\sqrt{19}i
Zjednodušte.
b=-1+\sqrt{19}i b=-\sqrt{19}i-1
Odčítajte hodnotu 1 od oboch strán rovnice.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}