Rozložiť na faktory
\left(a-5\right)^{2}
Vyhodnotiť
\left(a-5\right)^{2}
Zdieľať
Skopírované do schránky
p+q=-10 pq=1\times 25=25
Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru a^{2}+pa+qa+25. Ak chcete nájsť p a q, nastavte systém tak, aby sa vyriešiť.
-1,-25 -5,-5
Keďže pq je kladné, p a q majú rovnaký znak. Keďže p+q je záporná, p a q sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 25.
-1-25=-26 -5-5=-10
Vypočítajte súčet pre každý pár.
p=-5 q=-5
Riešenie je pár, ktorá poskytuje -10 súčtu.
\left(a^{2}-5a\right)+\left(-5a+25\right)
Zapíšte a^{2}-10a+25 ako výraz \left(a^{2}-5a\right)+\left(-5a+25\right).
a\left(a-5\right)-5\left(a-5\right)
a na prvej skupine a -5 v druhá skupina.
\left(a-5\right)\left(a-5\right)
Vyberte spoločný člen a-5 pred zátvorku pomocou distributívneho zákona.
\left(a-5\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
factor(a^{2}-10a+25)
Tento trojčlen má tvar mocniny trojčlena, ktorý je možno vynásobený spoločným činiteľom. Mocniny trojčlena možno rozložiť nájdením druhých odmocnín člena s najvyšším a člena s najnižším mocniteľom.
\sqrt{25}=5
Nájdite druhú odmocninu člena s najnižším mocniteľom 25.
\left(a-5\right)^{2}
Druhá mocnina trojčlena je druhá mocnina dvojčlena, ktorý je súčtom alebo rozdielom druhých odmocnín prvého a posledného člena, pričom znamienko sa určuje podľa znamienka stredného člena druhej mocniny trojčlena.
a^{2}-10a+25=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Umocnite číslo -10.
a=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Vynásobte číslo -4 číslom 25.
a=\frac{-\left(-10\right)±\sqrt{0}}{2}
Prirátajte 100 ku -100.
a=\frac{-\left(-10\right)±0}{2}
Vypočítajte druhú odmocninu čísla 0.
a=\frac{10±0}{2}
Opak čísla -10 je 10.
a^{2}-10a+25=\left(a-5\right)\left(a-5\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte 5 a za x_{2} dosaďte 5.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}