Skočiť na hlavný obsah
Rozložiť na faktory
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}+6x+9
Zmeňte usporiadanie polynomickej rovnice do štandardného tvaru. Členy zoraďte od najväčšieho po najmenší.
a+b=6 ab=1\times 9=9
Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru x^{2}+ax+bx+9. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
1,9 3,3
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je kladné, a a b sú oba kladné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 9.
1+9=10 3+3=6
Vypočítajte súčet pre každý pár.
a=3 b=3
Riešenie je pár, ktorá poskytuje 6 súčtu.
\left(x^{2}+3x\right)+\left(3x+9\right)
Zapíšte x^{2}+6x+9 ako výraz \left(x^{2}+3x\right)+\left(3x+9\right).
x\left(x+3\right)+3\left(x+3\right)
x na prvej skupine a 3 v druhá skupina.
\left(x+3\right)\left(x+3\right)
Vyberte spoločný člen x+3 pred zátvorku pomocou distributívneho zákona.
\left(x+3\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
factor(x^{2}+6x+9)
Tento trojčlen má tvar mocniny trojčlena, ktorý je možno vynásobený spoločným činiteľom. Mocniny trojčlena možno rozložiť nájdením druhých odmocnín člena s najvyšším a člena s najnižším mocniteľom.
\sqrt{9}=3
Nájdite druhú odmocninu člena s najnižším mocniteľom 9.
\left(x+3\right)^{2}
Druhá mocnina trojčlena je druhá mocnina dvojčlena, ktorý je súčtom alebo rozdielom druhých odmocnín prvého a posledného člena, pričom znamienko sa určuje podľa znamienka stredného člena druhej mocniny trojčlena.
x^{2}+6x+9=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-6±\sqrt{36-4\times 9}}{2}
Umocnite číslo 6.
x=\frac{-6±\sqrt{36-36}}{2}
Vynásobte číslo -4 číslom 9.
x=\frac{-6±\sqrt{0}}{2}
Prirátajte 36 ku -36.
x=\frac{-6±0}{2}
Vypočítajte druhú odmocninu čísla 0.
x^{2}+6x+9=\left(x-\left(-3\right)\right)\left(x-\left(-3\right)\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte -3 a za x_{2} dosaďte -3.
x^{2}+6x+9=\left(x+3\right)\left(x+3\right)
Zjednodušiť všetky výrazy v podobe p-\left(-q\right) na p+q.