Skočiť na hlavný obsah
Riešenie pre x (complex solution)
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

7x^{2}-4x+6=0
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 7\times 6}}{2\times 7}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 7 za a, -4 za b a 6 za c.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 7\times 6}}{2\times 7}
Umocnite číslo -4.
x=\frac{-\left(-4\right)±\sqrt{16-28\times 6}}{2\times 7}
Vynásobte číslo -4 číslom 7.
x=\frac{-\left(-4\right)±\sqrt{16-168}}{2\times 7}
Vynásobte číslo -28 číslom 6.
x=\frac{-\left(-4\right)±\sqrt{-152}}{2\times 7}
Prirátajte 16 ku -168.
x=\frac{-\left(-4\right)±2\sqrt{38}i}{2\times 7}
Vypočítajte druhú odmocninu čísla -152.
x=\frac{4±2\sqrt{38}i}{2\times 7}
Opak čísla -4 je 4.
x=\frac{4±2\sqrt{38}i}{14}
Vynásobte číslo 2 číslom 7.
x=\frac{4+2\sqrt{38}i}{14}
Vyriešte rovnicu x=\frac{4±2\sqrt{38}i}{14}, keď ± je plus. Prirátajte 4 ku 2i\sqrt{38}.
x=\frac{2+\sqrt{38}i}{7}
Vydeľte číslo 4+2i\sqrt{38} číslom 14.
x=\frac{-2\sqrt{38}i+4}{14}
Vyriešte rovnicu x=\frac{4±2\sqrt{38}i}{14}, keď ± je mínus. Odčítajte číslo 2i\sqrt{38} od čísla 4.
x=\frac{-\sqrt{38}i+2}{7}
Vydeľte číslo 4-2i\sqrt{38} číslom 14.
x=\frac{2+\sqrt{38}i}{7} x=\frac{-\sqrt{38}i+2}{7}
Teraz je rovnica vyriešená.
7x^{2}-4x+6=0
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
7x^{2}-4x+6-6=-6
Odčítajte hodnotu 6 od oboch strán rovnice.
7x^{2}-4x=-6
Výsledkom odčítania čísla 6 od seba samého bude 0.
\frac{7x^{2}-4x}{7}=-\frac{6}{7}
Vydeľte obe strany hodnotou 7.
x^{2}-\frac{4}{7}x=-\frac{6}{7}
Delenie číslom 7 ruší násobenie číslom 7.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=-\frac{6}{7}+\left(-\frac{2}{7}\right)^{2}
Číslo -\frac{4}{7}, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{2}{7}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{2}{7}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-\frac{4}{7}x+\frac{4}{49}=-\frac{6}{7}+\frac{4}{49}
Umocnite zlomok -\frac{2}{7} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}-\frac{4}{7}x+\frac{4}{49}=-\frac{38}{49}
Prirátajte -\frac{6}{7} ku \frac{4}{49} zistením spoločného menovateľa a sčítaním čitateľov. Potom vykráťte zlomok na jeho základný tvar, ak je to možné.
\left(x-\frac{2}{7}\right)^{2}=-\frac{38}{49}
Rozložte x^{2}-\frac{4}{7}x+\frac{4}{49} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{-\frac{38}{49}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-\frac{2}{7}=\frac{\sqrt{38}i}{7} x-\frac{2}{7}=-\frac{\sqrt{38}i}{7}
Zjednodušte.
x=\frac{2+\sqrt{38}i}{7} x=\frac{-\sqrt{38}i+2}{7}
Prirátajte \frac{2}{7} ku obom stranám rovnice.