Riešenie pre x
x=-1
x=3
Graf
Zdieľať
Skopírované do schránky
x^{2}-2x-3=0
Vydeľte obe strany hodnotou 5.
a+b=-2 ab=1\left(-3\right)=-3
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx-3. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
a=-3 b=1
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je záporná hodnota, záporné číslo má vyššiu absolútnu hodnotu ako kladné. Jedinou takou dvojicou je systémové riešenie.
\left(x^{2}-3x\right)+\left(x-3\right)
Zapíšte x^{2}-2x-3 ako výraz \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Vyčleňte x z výrazu x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Vyberte spoločný člen x-3 pred zátvorku pomocou distributívneho zákona.
x=3 x=-1
Ak chcete nájsť riešenia rovníc, vyriešte x-3=0 a x+1=0.
5x^{2}-10x-15=0
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-15\right)}}{2\times 5}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 5 za a, -10 za b a -15 za c.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
Umocnite číslo -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-15\right)}}{2\times 5}
Vynásobte číslo -4 číslom 5.
x=\frac{-\left(-10\right)±\sqrt{100+300}}{2\times 5}
Vynásobte číslo -20 číslom -15.
x=\frac{-\left(-10\right)±\sqrt{400}}{2\times 5}
Prirátajte 100 ku 300.
x=\frac{-\left(-10\right)±20}{2\times 5}
Vypočítajte druhú odmocninu čísla 400.
x=\frac{10±20}{2\times 5}
Opak čísla -10 je 10.
x=\frac{10±20}{10}
Vynásobte číslo 2 číslom 5.
x=\frac{30}{10}
Vyriešte rovnicu x=\frac{10±20}{10}, keď ± je plus. Prirátajte 10 ku 20.
x=3
Vydeľte číslo 30 číslom 10.
x=-\frac{10}{10}
Vyriešte rovnicu x=\frac{10±20}{10}, keď ± je mínus. Odčítajte číslo 20 od čísla 10.
x=-1
Vydeľte číslo -10 číslom 10.
x=3 x=-1
Teraz je rovnica vyriešená.
5x^{2}-10x-15=0
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
5x^{2}-10x-15-\left(-15\right)=-\left(-15\right)
Prirátajte 15 ku obom stranám rovnice.
5x^{2}-10x=-\left(-15\right)
Výsledkom odčítania čísla -15 od seba samého bude 0.
5x^{2}-10x=15
Odčítajte číslo -15 od čísla 0.
\frac{5x^{2}-10x}{5}=\frac{15}{5}
Vydeľte obe strany hodnotou 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{15}{5}
Delenie číslom 5 ruší násobenie číslom 5.
x^{2}-2x=\frac{15}{5}
Vydeľte číslo -10 číslom 5.
x^{2}-2x=3
Vydeľte číslo 15 číslom 5.
x^{2}-2x+1=3+1
Číslo -2, koeficient člena x, vydeľte číslom 2 a získajte výsledok -1. Potom pridajte k obidvom stranám rovnice druhú mocninu -1. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-2x+1=4
Prirátajte 3 ku 1.
\left(x-1\right)^{2}=4
Rozložte x^{2}-2x+1 na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-1=2 x-1=-2
Zjednodušte.
x=3 x=-1
Prirátajte 1 ku obom stranám rovnice.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}